
HD-Ai32 569 FORMAL TECHNIQUES IN THE MANAGEMENT OF SOFTWARE DESIGN I/4
(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFE OH
N E RICHARDSON 17 JUN 83 AFIT/CI/NR-83-28D

UNCLASSIFIED F/G 912 NLmommommommidiu
mhEmhmhohhhEEImhlhlEEIIEllI
IEhEEIIIhElhEEE
lllllllllllhhll
I lfllflflllllllll
llllllEEEEEllI

1111.0 It LA 22N1111 I 3 1 .

.0..

L6 110

1111 25 11111 i. 1-.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU 0F STANDARDS- I963-A

* ,rr-Ir.r.--.

...

SECL.RJ7Y CLASSIFICATION Of THtIS PAGE (When Data Enteried),

REPORT DOCUMENTA.TION PAGE RA *brLCro~

I. REPORT NUMBER 2Z. GOVT ACCESSION No. 3 RECIPIENT'S CATALOG NUMWEP

AFIT/CI/NR 83-28D A%1 3; _____________

4 TITL-E (.nd Subtitle) S. TYPE OF RE.PORT A, PE~OO CO'WERCO

__ Formal Techniques in the Management of Software ~ ~~DSETTO
S Design ________________________

G PERFORMING O-4G. REPORT NjmSER

, 7. AUTmOR(s) S. CONTRACT OR GRANT NuMBER(s)

William E. Richardson

N

9. PERFORMING ORGANIZATION NAME AND0 ADDRESS 10. PROGRAM ELEMENT. PRQ.IECT, TASK
W AREA II WORK UNIT NUMBEDS

AFNT STUDENT AT: Oxford University

I I CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

AF[T/r4R 17 June 1983
*1WPAFB OH 45433 I). NUMBER OF PAGES

14. MONITORING AGENCY NAME A ADDRESS(If different from Contraiiind Office) IS. SECURITY CLASS. (of this report)

U1ICLASS
a. DECLASSIFICATION DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the absttedt entered in Block 20. it different trm Report)

'13. SUPPLEMENTARY NOTES
!0 1 A73 M04i.

APPROVED FOR PUBLIC RELEASE: IAW APR 190-17 D~a~

1~SEP Air Al re Intuteoecnlg

19. KEY WORDS (Continue an reverse side it necessary and identify by biock numbe,)

20. ABSTRACT (Continue on reversa, aide If necosaery and Identify by block Inumber)r

SATTACHED SP 618

-~DD 0,",1, 1473 ED; TION OF NOV 6S IS OBSOLETE UNCLASS

83 9 4 9GTY CLASSIFICATION OF THIS PAGE 0R74e,, ')wo f,ICv,e.JP

Formal Techniques

In the

Management

Of__ _ _ _ _ _ _ _ _ _ _

iAccession For

NTIS GRA&I
Software Design D TIC TAB

U-8nniounced

By
1 Distribution/

Avai1niM'ity Codes

Cr i t 1 2ec ial

by
William E. Richardson

Merton College

June 17. 1983

A thesis submitted In fulfilment of the requirements for the degree of Doctor

of Philosophy in the Faculty of Mathematics at the University of Oxford.

ABSTRACT

4,

Formal Techniques In the Management 01 Software Design

William E. Richardson

Merton College

Doctor of Philosophy

.4

Trinity Term 1983

The Inordinately high cost of software continues to be the major
shortcoming, In the development of computer systems. In the past. attempts

•to solve thisWsoftware crisis-have been from one of three Independent
approaches -- using structuring techniques, or using formal techniques
(together these two are called software engineering) or using management
techniques. It Is now apparent that this -inmanagement-technoogy decoupllngo-L
Is avoidable and that a viable software design methodology must include
mutually supportive management. structuring, and formal components. This
thesis attempts to develop lust such a methodology for the design of large
systems. 74 rintl st of wic c be teluat

NJfet-we proposeka se fcriteria wihwillb use tevlaedesign
methodologies. t Based on these criteria and research Into existing
methodologies. mwe then outilnes b new methodology. It utilizes the
advantages of high level abstraction, an extensible set theoretical notation.
hierarchical structuring, and numerous management techniques. A simple
example Is given to Introduce the design style and notation.

In order to assess the new methodology mund,0 ik Interaction of
management and software engineering techniques. -wed a case study
development of a windowed Information sharing display and filing system.

*This development has as its starting point a simple but very powerful
abstraction which could be used as the basis for any similar system. The
abstraction is presented with an appropriate natural language explanation so
that It could be a self contained entry In a library of high level abstractions.

On the basis of the case study. we give a partiai assessment of the
methodology against the stated criteria. Two existing methodologies are also
assessed for comparison.

• °

abtato4speetdwt naporat aua agaeepaains -.

ACKNOWLEDGEMENTS

For all manner of support. Including clerical and morale. I thank my

wife Cynthia. Without her diligent efforts and indulgence this work would

certainly never have come to fruition.

I would also be remiss If I did not mention my parents to whom I

generally owe so muqh but who seldom get the appropriate expression of

thanks.

For his constant Inspiration and succor. I wish to express my thanks

to my supervisor. Professor C. A. R. Hoare. His comments were always

thought provoking and relevant.

My thanks also to Alex Teruel and Terry Erdle for the Interesting

discussions and for their perspectives on the problems of the world and

computer science.

Finally. I wish to express my graditude to those who made my efforts

financially possible: The Committee of Vice-Chancellors and Principals of the

Universities of the United Kingdom who selected me for an Overseas Research

Student Grant for each of my last two years: and the United States Air Force.

the United States Air Force Academy Department of Computer Science. and

the Air Force Institute of Technology who collectively afforded me all other

material support. To these organizations I give my sincere thanks.

-1

"A;i

.*,..'

Ij

.4:.

I dedicate this research to my beautiful new daughter. Suzanne: may she

too discover the excitement that learning can bring.

-a-.

"o.'

.9..

°o..

* .- 4 U'

TABLE OF CONTENTS

L IntroducUon.

1. The Problem. I-i
2. The Solution. 1-2

a. History. 1-2
b. Our Approach. I-5

3. Thesis Organization. 1-6

II. Methodology.

1. Criteria. i-i
a. Control of Creativity and Cumulativity. 11-2
b. Guaranteed Product Reliability. 11-3
c. Requirement Evolution. 11-4
d. Continuity Through the Lifecycle. 11-5
e. Continuous Client Involvement. 11-6
f. Manageability. 11-6

2. Software Engineering Basis 11-8
a. Initial Abstraction. 11-8

b. The Hierarchy. 11-10
1. Horizontal Decomposition.
2. Vertical Decomposition.
3. Summary.

c. Formal Specification. 11-16
d. Verification. I-16

3. Methodology Overview. 11-19
a. The Products. 11-20
b. The Activities. 11-27

4. A Small Example. 11-34
a. Requirements Definition. 11-36
b. Decomposition. 11-36
c. Abstract Design 11-37
d. Detailed Design 11-54

Ill. A Family of Visible Filing Systems.

1. Introduction. Ill-1
2. Synopsis. 111-2
3. Specification. 111-9

IV. The Abstract Baseline.

1. Requirements Definition. IV-2
2. Decomposition. IV-2
3. Abstract Design. IV-4
4. Provisional User's Manual. IV-5

0.

V. The Detailed Baseline.

1. Detailed Design. V-2
2. Implementation Plan. V-112

V1. Comparison of Methodologies.

1. Analysis of the Case Study. VI-1
a. Against the Criteria. V-Ii
b. Problems. VI-5

2. 7he Hierarchical Development Methodology. Vi-7S . The USAF Development Methodology. VI-14

VII. Conclusions.

-1. Contributions. V11-1
2. Future Research. VII-2
3. Addendum VII-3

Appendix A -- Specification Library.

References.

CHAPTER I

Introduction

Today's major shortcoming In the development of computer systems

Is. just as It was ten years ago, the cost of the software. Far from having

been solved, this problem appears to be growing more critical as the

proliferation of computer systems Increases at an unprecedented rate. It Is.

therefore. Imperative that we strive to define and Implement a practical

software development methodology which consolidates the technical and

*management gains we have made In the sofilware development field. The

overall aim of this thesis Is to contribute to the design of just such a

methodology. In particular. we Investigate the practical application and

management of formal software techniques within a development methodology

.°''

for large scale sequential software systems.

1.1 The Problem.

- At present. It Is estimated that 75% of the purchase price of an off

the shelf computer system Is allocated to the cost of the software[Boehm.81).

Often more than 50% of this software expense comes from the cost of

-~ maintenance (either repair or enhancement.) The decade from 1980 to 1990

* will see (in the US. for example) a six-fold increase in the computer and
1Information processing industry(Boehm.811. This means that at the current

cost ratios, the US In 1990 will be spending about $120.00,000.000 per year

on software maintenance. However, as hardware becomes economically

feasible for more applications and as the scarcity of trained personnel

Intensifies, overall software costs are very likely to Increase significantly faster

than even this prediction would Indicate[WaSserman.81; Distaso.801. It Is also

likely that the percentage of the software budget consumed by maintenance

will Increase to as much as 80% In this decade(Pressman.82J.

..,

Of course, only the direct costs of software development are defined

in these statistics. Of equal or greater Importance are the Indirect costs.

These result from loss of business due to late delivery or software failure.

disruption of the client's organization, system misuse or difficulty of use.

system failure to keep user's trust, etc. Although these costs are of great

significance they cannot, In general. be accurately measured.

The cost of software will continue to be the weak link in the computer

system development chain and may even retard the growth In computer

applications If it continues to climb. Stabilization and eventual decrease of

overall cost requires a corresponding Increase in software development

productivity, reliability, and ease of adaptation, along with an increased

concern for the Indirect costs attributable to software production and use.

1.2 The Solution.

a. History.

Previous attempts to deal with the crucial problem of software cost

have been numerous and varied. In general, these cost limiting strategies

fall into one of two approaches -- software engineering or management.

This separation of approaches has been chlled the management-technology

decoupling." (Boehm,761

For our purposes. software engineering can be defined as the

application of scientific ('engineering-like') principles to any stage of software

design and maintenance. Two general forms of software engineering

techniques have been proposed -- structuring techniques, which are

processes to guide and delimit the software during development, and formal

techniques, which are well formulated scientific or mathematical processes

Involving the use and manipulation of meaningful symbols. In general, the

software engineering approach has the goal of improving the readability.

verifiability, reliability, and maintainability of the software.

Structuring techniques are based on the general theory that 'the

structure of the program itself Is the single most important determinant of

the lifecycle costs of a software project.' (Bergland.81;:1] These techniques

attempt to enforce a division of labor, allow informal reasoning about program

parts, and allow the substitution of equivalent modules within a program.

I F; - 7. 0 . -

A few of the structuring techniques which have been applied with success

to different aspects of the software development process are:

decomposltion/modularizatlon (Parnas.721

goto-less programming [Dilkstra.681

structured programming [Dahl.721

stepwise refinement [Wirth.711.

The formal techniques suggest a two part approach to the problem:

the first part Is production of the design specification, the statement that

formally embodies the system requirements and defines the behavior of the

system. The second part is the formal verification that the Implemented

software rigorously adheres to the specification of the design.

"The formal methods seek to do for programming what mathematics has done
for engineering: provide symbolic methods whereby the attributes of an artifact %
can be described and predicted.' [Berg.82;,)

One or more symbolic notations and the mathematical methods to manipulate

the notation must be Incorporated into any viable formal technique. (See

[Goguen.801 or (Berg.821 for a further discussion of what is desirable in such

a formal symbology.) A few of the representations which have been proposed

for use In formal techniques Include:

CLEAR [Burstall.80-

set theory [Abrial,821

RPECIAL (Levitt]

temporal logic (Manna.801

algebraic specifications (Horning.801

META-IV (Bjorner.821

The management approach adheres to the philosophy that general

and applied management practices are effective for controlling software

development and Its associated cost. Proponents of this approach stress that

OIt Is fundamentally a management problem to Insure that the product will

In fact be what the user wants." (Cave.781 Often, unlike the software

engineering approach, management a rategles will focus on the software

development and maintenan -,)cc Itself rather than the resulting software.

That Is, with the management dpproach, cost reduction occurs generally as

a result of a simplified or more efficient development process rather than

the development of a superior implementation. Experience has shown.

however, that a simplified development technique may also have the secondary

effect of promoting better programs. Although the management approach is

by far the most varied and arguably the most successful of the current

attempts at moderating software costs, It has become obvious that there are

no purely management solutions to technical problems. A few of the numerous

management strategies which have been practically applied are:

egoless programming (Weinberg,691

chief programmer teams [Baker. 72i

unit development folders [Ingrassia.78i

walk-throughs [Yourdon,78].

In conjunction with these approaches to minimizing software costs.

automated tools and program development environments have been created.

Such tools are generally designed to effect a savings by simplifying and

enforcing either a software engineering or a management strategy. To date.

the achievements of such tools have been limited as a result of two serious

shortcomings[Wasserman,82]:

1. They fall to support a software development methodology or assist

in the control of a software development process.

2. They fall to support the entire software development lifecycle.

That is, such tools have been only marginally successful because they are

very Isolated In terms of their scope and Integration into the overall

development process.

This brings us to a second standard by which we can categorize

software cost reduction strategies; that Is. the extent of the software lifecycle

over which the strategy Is effective(Berg]. A method Is a strategy which

directly affects the software, design, or the development process In a "

restricted portion of the lifecycle. A strategy or coordinated group of

strategies which consistently Influence a significant portion of the lifecycle

is called a methodology. By far, the larger number of strategies Introduced

have been methods designed to Influence one phase of the lifecycle. usually

• ,

Z-. I.

implementation. However, a few methodologies have been defined; for

example:

top-down design methodology

Jackson structured design methodology (Jackson.751

chief programmer teams (Baker.721

Hierarchical Development Methodology (HDM) (Silverberg)

Rigorous Methodology (Jones.801

Rational Design Methodology (RDM) [Boyd.a]

USAF Methodology [USAF)

.

DEVELOPMENT

SOFTWARE
ENGINEERMN MANAEMENT

:! I uo<w I

IIEIC.OUES I

~FIG. 1-1 -- Historical Approaches to the Software Development Problem.

b. Our Approach.

~The approach taken In this thesis Is that the gap between the software

engineering and management strategies Is avoidable and can be bridged with

• .'a synergistic result. Further, such a combined strategy Is required If the

critical problem of software cost Is to be effectively contained In the design

and development of large scale application software systems. Otherwise, the

problems of communication, management control and correctness of the

product grow in a geometric relation to the size of the project. [Brooks.7 51

., .- o"

ET- N: OC ,..,.,.....,,L.,.,,.,... ... E S

- • --

77 . "

In order to design a practical combined software

engineering-management approach. we have adapted or developed selected

formal, structuring, and management methods and have composed them Into

an Integrated whole. The resultant methodology combines many desirable

Cost reducing features of the previously independent approaches. These

features include:

- use of very abstract initial designs and potential reuse of previous

. abstraction designs

- expanded set theoretical formal design notation which allows formal

verification and testing of design features

separation of formal verification and design for Increased

management control

- vertical and horizontal decomposItion/recomposition to 'divide and

conquer* the design problem

- separation of design and implementation decisions

- a limitative design approach to constrain the complexity of the

design

- use of baselines. milestones and configuration management controls

within the formal design process

- use of prototypes
- progressive require enl jv*opmen with continuous client

Involvement

- continuous design documentation with an explicit statement of design

decisions

In general, this approach to the design of large software systems attempts

to Insure that *everyone will know what they ought to know when they ought

to know it."

1.3 Thesis Organization.

In Chapter II we define a set of Important criteria which we will use

to assess software development methodologies. We then develop the main

points of our proposed methodology, giving emphasis to the Interaction among

the formal, structural, and management aspects of the technique. To conclude

the second chapter we present a simple Introductory example of the formal

design structure and notation. In the third chapter we define a very abstract

family of Information sharing filing systems. This family is also presented

in the style and notation of the proposed methodology and forms the basis

of one component In the case study design of Chapters IV and V. Our case

study is the design of a windowed, Information sharing, visible filing system.

It demonstrates an application of the methodology to a reasonably sized design

problem. The complexity of this development has been controlled by

eliminating most communication requirements (ie. a one man design and
implementation with a hypothetical client) and by concentrating on the unique

components of the methodology during the first half of the software life cycle.

In Chapter VI we evaluate the case 'study application of the
methodology and extrapolate these conclusions to large scale, multi-man

developments over the full ilfecycle. By so doing, we prepare the way for

more substantial tests of the methodology. Additionally. in this chapter we

compare the proposed development technique with two other techniques of
Interest: the methodology currently used by the US Air Force and the

Hierarchical Development Methodology of SRI International.

The final chapter summarizes the significance of the proposed

methodology as an approach to the problem of software cost and reviews

other contributions of this research. For completeness. a sketch of possible

future research is given. --

• . ..

.4.. .-

.*

-_.

CHAPTER 11

Methodology

Although the historical approaches listed In the previous chapter gave

4. us some general guidelines, substantial further research was required to

produce a practical methodology based on the experience gained from those

approaches. We surveyed the significant existing software design techniques

to determine if. and how. they attempted to satisfy the problems of large

scale software system development. Then we defined the most Important

criteria by which to judge any proposed methodology. These criteria are

presented In the foilowing section. From our research and criteria definitions.

we produced a set of basic tenets which appear to collectively define an

improvec' software development methodology for large systems. Section 11.2

contains these tenets In the form of an overview of the Important aspects

of our methodology, The reader Is advised that the recommended approach

to Section 11.2 Is an Initial quick skim, followed by a more detaled perusal.

it required, after reading the methodology overview In Section 11.3 and the

small example application In Section 11.4.

11.1 Criteria.

Each of the historical approaches and techniques discussed In

Chapter I provides a partial solution to the software development problem:

likewise, each lacks some advantage provided by the others. Therefore, In
a sense, our general criteria for a more effective software deveiopment

strategy must Include a capability for structuring. verifying, and managing the

development process consistently throughout the lifecycle of the software

product. However, these three historical strategies are much too specific

and are occasionally even orthogonal to the actual characteristics we require

to meet our stated goal of Improved software development. A number of

other attempts to develop criteria for the comparison and evaluation of

software design methodologies have produced other general criteria. Some

of these criteria can be found in (Berg.80; Boyda: Carlson,82: Keeton.80;

Griffiths.78, Parker,78: Peters,79: Pressman.82). etc. In all cases. the criteria

presented by these authors do not put the emphasis In the area of software

cost reduction or are too general to be of use to us. Consequently, we

have formulated our own criteria to emphasize the key areas as determined

by our research. It would be Impossible to present a complete set of criteria

so we have limited ourselves to the more significant ones.

a. Control of Creativity And Cumulativity.

As in any design process. software design is a combination of two

activities -- creation (innovation) and reapplication of previously designed
components or reuse of concepts. (The example of architectural design often

comes to mind when discussing the design process. Certainly, it Is easy

to relate these two activities to the design o1 a building or a bridge.) The

first activity is highly dependent upon the utilization of human intelligence

and cannot generally be distilled down to a set of step-by-step procedures.

Consequently, this Is an unpredictable process which is subject to error.

backtracking, and multiple Iterations, and is difficult to manage. Therefore.

the creative nature of design cannot be without restraint, and must. in the

end, lead to the objectives of correctness, completeness, robustness.

maintainability, adaptability, economy, etc. At the same time, this restraint

cannot be guilty of stifling the creative ability of the software engineer either

by overly complex notation or by drowning him in a morass of detail.

The second activity of design requires previous designs be available

and modifiable to fit new circumstances. This capability for reapplication

design efforts to new but similar problems could be called the cumulativity

of a design field. The danger inherent in not requiring a design process

to be cumulative is that errors are repeated. lessons are not learned through

experience, and solutions do not Improve even though the problems get more

complex or critical. At present. In spite of vigorous pursuit of this objective.

the cumulativity of software design has remained at a very low

level(Branstad.8 U1.

V.

Therefore. a software design methodology should provide:

1. a technique for identifying and Isolating components which must

be creatively designed. ,

2. an environment which enhances creativity by guiding and

structuring but does not overwhelm the creative effort.

3. a technique for expanding the reapplication of designs (not just

programs(Parnas751)

b. Guaranteed Product Reliability.

An important responsibility of any design methodology is to adequately

guarantee the reliability of the design and its implementation. Put slightly

differently. the designer should, to the requisite level, validate the accuracy

of the design's representation of the client's requirements and verify that

Implementations accurately correspond to the designs. It is significant to

note that the communication of requirements from the client to the designer

is the single link In the development process which cannot be formalized;

hence, validation will always remain a subjective and informal task.

Verification can be either Informal or formal. Informal verification

is an attempt to find and correct errors early in the design and Implementation

stages. Formal verification works at proving the mathematical correctness of

the Implementations In a formal notation. However, totally formal techniques

are expensive to the point of being impractical for use on large

developments[Berg.82" Pressman,82]. The true advantage in reliability afforded

by the use of formal specifications Is In the discipline It Imposes so that

programs need not be proven correct so much as developed In such a manner

as to make their correctness evident[D1jkstra,76).

Our criterion of guaranteed product reliability does not attempt to

dictate absolute correctness of the design and Implementation, which would

be an unrealistic standard. Instead, it requires that management can

prescribe and control the level of reliability for individual system components.

Consequently, within the scope of a methodology the development manager

should be able to dictate the rigor(Jones.801 of the verification and (within

limits) the granularity of the specification. From this we can see that formal

and management framework of a methodology must be mutually supportive

and cannot just be allowed to coexist.
o. 4

c. Requirement Evolution.

"The problem of generating complete. consistent, unambiguous, 0
testable software requirements continues to plague the software Industry and
remains the most serious challenge to bring order to the software development
process.... This problem. which has been debated, analyzed, and researched
for years. is Invariably the critical factor in project success or failure for
most projects of significant size. [One of) the key elements of this problem

[is) continually changing user needs." [Distaso,80; 10,

This quotation sums up well the critical and difficult nature of

requirements definition In the software development process. And It suggests

why. In any design process, requirements definition must be accomplished

in an evolutionary and Iterative manner. It must be evolutionary because

requirements are usually hierarchical -- one does not usually stipulate the

size of the master bedroom before defining the style of the house he wishes

the architect to design. Each new level of requirement builds on the

preceding levels of requirement definition; at each level the client wants to

be left with some freedom for expressing his requirements as the system

takes shape. It is an iterative process because backtracking to a previous

level may be required when it becomes obvious that a new requirement is

contradictory to those previously defined. This view of requirements definition

as evolutionary and iterative leaves one wondering how It differs from the

process of hierarchical design. As the design theorist Rittel stressed: 'A .

statement of the problem Is a statement of the solution.'[Rlttel.73] If the

design problem statement and the design solution statement are In the same

terms (le. both formal, both In natural language text, both in graphical

representation, etc.) they are essentially equivalent statements. It is. therefore.

not only unnatural but counterproductive to attempt to separate formal

requirements definition and the formal design process.

The client, unless he Is highly sophisticated or has a trivial problem.

Is likely to have only a limited initial understanding of his requirements and

will undoubtedly express those requirements in an Incomplete (and often

Inconsistent) manner In natural language. For every set of circumstances

there Is a different requirement Interpretation for each different client (and

a different design interpretation of the requirement definition for each different

designer.)

This wide variation In client requirement Interpretation impels any

design methodology which starts with an Informal requirement definition (as

invariably It must) to allow great flexibility In its formal starting point. The

key. then. in the difficult transition from the Incomplete Informal requirements

definition to a formal definition (le. a formal design) is to gain confidence

In the formal translation slowly. In an evolutionary manner with provision for

Iteration.

d. Continuity Through the Lifecycle.

Although most of today's software cost comes from the maintenance

end of the lifecycle. it has often been suggested (eg. [Buckle.771) that a
remedy to this situation will require a concentrated effort in all phases of

software development and In the early phases in particular. Hence, any viable

methodology must cover the entire life of the software system but must also

encourage early identification of critical factors in the design process.

Most authors include some combination similar to the following In

a description of the software lifecycle: problem definition, requirements

specification, design. Implementation. test. Installation.

maintenance/modification, and phase out. However, the separation between

the various lifecycle phases is not always distinct; and this is especially true

between requirements/design [Peters.78: Rlddle,78]. and design/implementation

(Swartout.82]. Optimally, a software engineering methodology will not only

consider the entire lifecycle. but will also reflect the similarity of consecutive

lifecycle phases. That Is. If, In a practical sense. design Is Indistinguishable

from requirements specification, then the techniques, tools, languages, etc.

used in the methodology should be the same for both of these phases.

In general, a verifiable software system, throughout Its lifecycle. will

have at least three different representations. The first is the natural language

(or at least, non-formal) representation of the client's requirements. The

second representation Is the formal and verifiable language of specification.

The final representation Is the machine executable one -- the software Itself.

(The first two representations are required as the documentation of the third.)

Consequently, It is obvious that at least two transitions will be required in

a methodology which attempts to deal with the entire software lifecycle.

Insuring smooth transitions among these representations Is one of the major

tasks of any methodology.

In sum, a viable methodology must reduce system lifecycle costs by

early recognition of potential design difficulties and by comprehensive

enforcement of the appropriate design procedures throughout the life of the

software system. These procedures must reflect the life stages of the software

and, further, must minimize the disruptive effect of representation changes.

e. Continuous Client Involvement.

Yet another vital element must be considered In the criteria for a

good design methodology. The client (user. customer, etc.) Is the driving force

behind a system design and. hence. the supreme judge of any software effort.

He will Invariably look at a newly developed system and ask: "Did I get quality

for the cost?" A design methodology must attempt to create a relationship

between the client's perception of the design quality and the design cost

which weighs heavily on the side of quality. This cannot be done formally

but experience shows that the best way to succeed In this task is to keep

the client actively involved from beginning to end -- It must be an Interactive

process between the client and the designer. The psychological benefits

(acceptence. increased satisfaction, feeling of contributlng)(Shnelderman.80

and the actual benefits (reduced training, reduced modification. etc.) from

client involvement can -be the difference between success and failure of a

software project.

As we noted In the section on Requirements Evolution, the client's

view of the problem is not static. This point is also succinctly presented

in a quote from (Peters,781:

...Although the customer may state his requirements very firmly at the
beginning, his perception of the problem begins to change as he begins to

consider how the solution development (le. design and perhaps coding) is
proceeding.-

Evolving requirements are the rule rather than the exception in large scale

application software development. Obviously. It is Important that design activity

not be allowed to advance faster than the client's requirements evolve.

Our conclusion is that client Interaction must be an Integral part of

the design methodology. This communication must be continuous, and it must

occur In both directions. And finally, In order to keep the design In concert

with the client's view of the requirements. the methodology must permit the

Judicious postponement of design decisions.

f. Manageability.
.9

Because of the complexity Inherent In the development of large scale
software systems, the ability to manage that complexity within the framework

of a methodology Is mandatory. For our purposes, we have categorized the
4-

"4!

areas which most require Inherent manageability within the discipline of the

methodology as:

1. Visibility and control

2. budgeting and accountability

3. coordination and communication.

The first area. visiblity and control. Is at the heart of process

management for any process. Visibility means that the manager can

accurately determine the status of the design effort at critical points. Control

Indicates that based on the current status of the project he can direct the

project In the manner which best suits his predetermined goals. In other

words. the methodology must give the design manager the flexibility to select

the most appropriate compromise from the conflicting design goals; It must

give him the capability to determine If the design Is progressing toward the

compromise he has selected: and finally, it must give him the capability to

redirect the design effort as necessary to achieve those goals.

The manageability of the resource budgeting and accounting In a
development process is also significantly dependent upon the visibility of the

process. In general, resource control in a process requires an Initial estimate

of resource allocation (budgeting) and periodic reviews (accounting) of

resource usage followed by estimate refinement. A methodology which does

not provide the capability to accurately determine resource allocations and

allow timely review of resource utilization will often prove dangerously

uncontrollable.

The final area of required manageability within a methodology Is In

communication and coordination. As noted In that classic of the software

management field, (Brooks.15J. the larger the project. the more difficult

communication and coordination becomes. We previously stressed the

Importance of communication with the client. Also of significance Is

management control over the communication and coordination within the

development team (designers. Implementors. verifiers, maintainers. etc.) A

major concern here, of course. Is with the style and standard of the

documentation. The ultimate answer to the problem of documentation Is that

the working of the methodology should automatically create the documentation

In the form required without management Intervention. Especially Important

In the documentation would be the explicit declaration of decisions and their

rationale.

VV% 7J. .7 -1 .

isummary. the crtro fmanageability suggests that a design

methodology, no matter how complete otherwise, Is not acceptable unless it

allows (or better still, enforces) the process control required by management. .
A methodology must view the software development process as a whole. not

lust program production but also budgets. schedules. priorities, operations.

* etc.

-Again. It should be emphasized that these criteria represent a

minimum set of capabilities we feel are desirable In a practical and viable

development. These criteria are obviously not mutually exclusive and In some

Instances may even represent overlapping or conflicting goals: therefore. the

objctveof determining a methodology to meet these criteria Is an inherently

complex task. As IBoehm.81;23] suggests.

oThe most Important software engineering skills we must learn are skills
involved In dealing with a plurality of goals which may be at odds with each
other. and the skill of coordinating the application of a plurality of means.
each of which provides a varying degree of help or hindrance In achieving
a given goal.0

11.2 Software Engineering Basis.

We introduce the technical concepts which form the software

engineering basis of our methodology In the following subsections. Standard

management concepts will not be explained In detail since they can be

referenced In any good software management book (eg. (Jensen.79:

Donaldson.781). In the Section 11.3 we integrate the software engineering and

management aspects into a complete design system.

a. Initial abstraction.

Initial requirements definitions will vary greatly In completeness and

stability depending on many factors outside the control of the software

engineer. Perhaps even more distressing. It Is often Impossible to determine

the degree of trust which should be afforded to any Initial problem description.

Consequently, the determination of how abstractly to begin the design Is one

of the more difficult tasks for the software designer. Our methodology

advocates an Initial abstraction which Is more general than appears to be

Indicated by the Initial problem requirements. Although no reference could

*be found of any other software design methodology taking this approach, there

N°a ,

are a number of .reasons for assuming that it is reasonable and logically

warranted.

First, the proven inadequacy of Initial requirement definitions and the

evolving nature of requirements make It necessary to give the designer

sufficient latitude to meet the client's reasonable requirements. This brings

us to compare the additive with the limitative approach to design. The additive

approach espouses the philosophy that the designer should adopt a meager

initial design and add capability as the requirements become known. This

is a very open-ended and undisciplined design technique. On the other hand.

the limitative approach suggests that an initial upper bound be placed on

the capabilities of the design and that excess capacity be deleted by design

decisions as the requirements evolve. This is a much more bounded

approach; therefore. It affords greater control over the design process since

a finite limit on the design scope and capacity is predefined. As a simplified

example of these two approaches, consider the design of an objective test

scoring system. The additive approach might be to represent a test as a

list (SEQ) of answers; while the limitative approach would begin more

abstractly, perhaps with a test represented by a relation between question

numbers and answers. In the former approach. the decision to allow questions

with multiple or no correct answer will necessitate an addition to the formal

representation of a test; however, the limitative abstraction could be restricted

to accommodate this reasonable requirement. In practical use. a methodology

must allow both approaches but should build where possible on the

management advantages of the limitative technique. This suggests that an

initial abstraction general enough to cover most reasonable client requirements

could be used to constrain the problem and allow a limitative design

technique.

Secondly. we must consider the client's comprehension of the system.

Since our criteria demand that the client be Involved throughout the design
process, it Is Important that he understands and agrees to the Initial design. :

The absence of detail which characterizes abstractions makes a very abstract

design generally easier to explain and, hence, a better basis upon which

to build the client's mental Image of the design.

Thirdly, we should note that any formal design starting point will hide .-

decisions by Implicitly requiring them within the formalism. As a very simple

example, an Initial abstract design of a list (SEQ) of words hides the decisions

that the words are to be consecutive and are numbered starting from one.

A partial function from natural numbers to words as the initial abstraction

hides neither of those decisions. The partial function representation would

have to be explicitly constrained to Include these decisions. We Insist that

any significant decision must be explained in natural language before it Is

defined in the formalism of the design. Therefore, we must attempt to limit

hidden decisions to those which are trivial or obvious by using very general

Initial abstractions.

Further. the flexibility and comprehensibility of a highly abstract design

make it a good candidate for use as a starting point for other similar design

projects. That is. software design cumulativity could, perhaps, be enhanced

be using the same very abstract Initial design for various similar design

problems.

b. The Hierarchy.

The hierarchical nature of our design methodology is a result of a

combination of two types of decomposition, horizontal and vertical(Goguen.80].

Horizontal decomposition partitions the Initial requirements into modules in

order to control the complexity and manageability of the design task. Vertical

decomposition divides levels of detail In a module to separate and order the

design decisions. For example, a report generator design might be

horizontally decomposed into separate modules for data Input, data base

update, and report output. The data base update module could have one

vertical level which records decisions about the required relationship among

various data fields in the data base. with the next vertical level restricting

the number of each type of record allowed in the data base. Horizontal

decomposition strives to create totally independent modules while each vertical

level is dependent upon the previous level for its basis.

b. I Horizontal decomposition.

Horizontal decomposition reduces the design problem. where

necessary, to a set of equivalent subproblems. each of which is conceptually

less difficult. This type of decomposition might also be regarded as static

decomposition because It is usually accomplished at the very onset of the

desip process and Ideally is not changed until each subproblem is solved.

At this point the static decomposition is undone by recomposition of the

decomposed components. This recomposition is required to demonstrate that

the various pieces of the design fit together In the manner contemplated when

they were decomposed.

,.,7-,7,7 -7-

The problem of how to horizontally decompose a requirement

influences the problem of how abstractly to define the decomposed

subproblems. The approach to the static decomposition Is usually a creative

decision, based on experience and not directed by the methodology; hence,

it needs positive management control. Decomposition Is affected by the

determination of which portions of the problem solution can be taken from

*previous design work. The Implication Is that the system manager should

scan previous designs whose more abstract models may be valuable as

- starting points. If no suitable abstractions are discovered, the problem will

need to be solved strictly by the unpredictable creative activity of design.

However, if usable abstractions are found, the decision of how to decompose

the original client's requirements may be directed by the availability of abstract

models for modules Included In a decomposition. The decisions on

decomposition and activity of design (creative or reapplicatve) must be made

concurrently as a first step.

The problem of finding predesigned abstract models which fit possible

components of the current requirements brings into focus an ancillary Issue

which should be noted. This Is the creation and maintenance of an

abstraction/implementation library. Such a library would greatly aid In efforts

to increase the cumulativity of software development. The publication and

standardization of design abstractions (especially very high level ones) would

certainly assist the effort of creating an accumulation of abstract models,
However, the marginal success gained by the several mathematical libraries

of this type points out three requirements for the success of such a library:

1) it must be well structured and easily accessed (perhaps automated). 2)

it must be well understood by Its users. and 3) it must be in a common,

standardized notation.

For large scale developments, the horizontal

decomposition/recomposition process is especially Important. Management

of multi-man designs requires that horizontally decomposed modules must

be (made to appear) Independent of each other (decoupled). In many

Instances, it will not be possible to decompose the problem Into decoupled

modules of an appropriate size. In such cases, the effects of the coupling

must be abstractly defined within each module. This technique may require
verification at recomposition that each coupled module acts (or Interacts) In

the way It has been abstractly described In each of its coupled partners.

That Is, at recomposltion the abstract representation(s) of a module within

other modules must be reconciled with the actual design for the module to

produce a single consistent representation. Constant management attention

Is required on this very critical problem of component communication. _

The timing of recomposition Is another one of the creative decisions

that must be developed through experience. For totally Independent modules.

recomposition Is necessary only at the end of the design process. However,

coupled modules may be recomposed when the advantage achieved by

decomposition Is outweighed by the necessity to share Information or design

decisions among modules. Also, Intermediate recompositions may be useful

to aid the manager's or client's perception of the system. Recompositlon

Is done with the union of abstract designs (abstract machines) and their

underlying theories. The new larger abstract design combines the attributes

(ie. invariants. state components, generic parameter definitions, observations.

and operations) of the decomposed abstract designs Into the smallest possible

complete set of attributes. That is, for example, Identical state components

appearing In two abstract designs which are recomposed will appear only

once in the recomposed machine. (See *Shared Subtheorleso In (Burstall.801

for a more detailed explanation of combining theories.)

b.2 Vertical decomposition.

Vertical decomposition denotes the different levels of design decisions

and simplifications which are documented in the various steps (called

advancements and refinements) of the specification process. Vertical

decomposition might also be called dynamic decomposition because it Is a

process which continues throughout the design process. However, at each

successive level of dynamic decomposition the designer Is obligated to

maintain the consistency between the new level and the previous level of

the design. This constant check on the consistency of the successive levels

of design removes any further requirement to recompose the various vertical

levels.

In the specification of a software system, there are two basic areas

of concern to the software designer. The first Is the accurate, complete,

and verifiable documentation of the system required by the client. The second

is a design whose primitives can be easily and efficiently Implemented. These

two concerns are each sufficiently complex that the combination of them in

a design methodology results In specifications which are often muddled and

incomprehensible. Our methodology structures the design process so that

the separation of these concerns Is possible. This separation eases the

design process and facilitates the Implementation of the resultant design. -

Advancement records and formalizes the design decisions while refinement

simplifies the formal representation of the design.

Advancement.

When the designer takes decisions to move an abstract design closer

to the client's required system, he restricts the different Implementations

(called the family of systems) specified by the abstract design. Taking these

restricting decisions Is the embodiment of the creative craft of limitative

design. It is essential to record decisions as precisely as possible so the

resulting system Is accountable, verifiable, and maintainable. We advance the

abstract design toward the required system each time a new level of decisions

Is taken and documented.

In many cases the order in which decisions are taken Is defined or

Influenced by factors outside the control of the software designer -- like client

requirement clarification, Information Input from external sources, etc.

However, where possible the decisions documented by the hierarchy of

advancement specifications should be directed by the rule that decisions about

*. which the designer (or client) is most confident would be used to advance

the specification first. This is an obvious technique for limiting the

backtracking required when questionable decisions need to be rescinded.

A second rule suggests that critical decisions should be Identified. if not

actually made, as early as posslble(Parnas721. The order In which decisions

are made is very Important but cannot be legislated -- the experience and

good judgment of the designer Is an Important factor In the proper ordering

of decisions.

Refinement

The second area of concern to the designer has less to do with

creative art of designing a system and more to do with Insuring a design

Is not overly complex and Is likely to be Implementable on a concrete machine.

The following picture Illustrates the difference between advancement and

refinement of a specification. (Advancement by decisions A and B restricts

the legal machine states; the refinement creates a new but equivalent

representation of the state space.)

-S

- I I • Cm3a V ,.
, ADA NCEME 01C6fi10 A AND 8

a kY
STAN m.a .. .

FIG. 11-1 - Advancement and Refinement.

-The refinement process allows the specification of an abstract
machine to be changed to an equivalent machine with a different

representation[Jones.80]. In general, a refinement Is used to make the

- machine representation slightly more concrete, although that Is not always

the case -- a simple regrouping of components for clarity Is another

refinement usage. More specific reasons for producing a refinement include

the following:

*1. After several advancements of an abstract machine the complexity and

detail of the state space restrictions often becomes unwieldy and difficult to

understand. At such a point, a refinement would be useful to create a

machine where these restrictions are less cumbersome or are Implicit In the

structure of the machine. That Is, a new state space equivalent to the

* remaining portion of the old state space Is defined.

*2. If new operations are difficult to define on the abstract machine as it

currently exists (or old operations have grown unwieldy and difficult to

* understand because of past advancements) then Is may be possible to refine

* the state space to facilitate the specification of the operations.

3. Implementation considerations might also prescribe the refinement of the

*abstract machine. These considerations are often efficiency considerations

* In the latter portions of the design process. For example. If an adequate -

* replacement for the abstract machine exists which represents more closely

the hardware or software features of the Intended (concrete) machine, then

this new representation Is likely to be less expensive to Implement In terms

of design effort, system resource requirements. etc.

.7- .7 7

4. The Initial decomposition of the design was done to structure the design

effort and make it more comprehensible by separating the different concerns.

At some point, the decomposed modules will need to be recomposed to form

the total system. But before the different modules can be recomposed Into

a single abstract machine, the components held In common by these modules

need to be refined Into an Identical representation in all modules. This will

allow the common machine components to be represented by a single

component of the recomposed machine state space.

From this discussion It can be noted that refinement Is not a

£ framework for documenting design (as Is advancement) but is a tool for

facilitating the readability and Implementability of the design specification.

The freedom to make refinement and advancement design steps In any order

required by the problem Is critical to the generality of our methodology.

(See (Domolkl.80J for a-very brief analysis of the difference between the two

theory relations we have called advancement and refinement.)

b.3 Summary.

The hierarchical nature of this design methodology is a result of the

combination of the two types of decomposition, vertical and horizontal. The

following diagram will help to demonstrate this point.

]IOt.tEMENTS
DEFIITION

] HORIZONTAL
DCOMPOSITON

SVERlCAL DECOMPOSITION AND
HORIZONTAL RECOMPOSITION

"°-N

HORIZONTALLY DECOMPOSE
0 MOULE

V11CAUL - eCOMeOSED

SHORIZONTAL ECOMPOSITON

FIG. 11-2 -- The Hierarchy

7- 77

There may be many decompositions (vertical and horizontal) which

are wrong for a particular problem; there certainly Is not a single one which S
Is right. Indeed, the best decomposition for a problem may well depend on

such factors as client's understanding of the requirements. the software

engineer's abilities, available abstractions, size of problem. etc. Horizontal

decomposition may separate modules (abstract subproblems) which relate to

different requirements set forth by the client. Or. It may separate out

important parts of the state space for closer attention. Vertical decomposition

can order decisions together by effect, by degree of difficulty, or by the

probable stability of the decisions. -

c. Formal Specification.

In order to unambiguously state the requirements and design of the

desired system, we will use a formal specification language. Using a formal

language allows us to contemplate design issues and perform design

verification prior to writing any program code.

We selected an extensible set theoretical notation. sometimes referred

* to as "Z'. for our formal specification notation. Although It is not executable.

it does have the scope to describe theories at any level from the very abstract

to a Pascal-like pseudo programming language. This notation is state based

with parameterized theories. In It we have the capacity for both procedural

• and data abstraction.

For a more complete Introduction to this notation see (Sufrin.821.

[Morgan.82aJ. and (Morgan.82b]. A brief review of relevant aspects of the

notation is presented in Appendix A.

d. Verification.

In our methodology, we must have the capability to formally and

Informally verify the products of the design process. The Informal verification

techniques Include walkthroughs. audits, reviews, and program testing. Since

these are commonly found in the literature (eg. [Yourdon.78]). we will not

dwell on them except to explain how they are used in conjunction with the ..

formal products of the design.

The Informal techniques can be used to check the formal design in

exactly the same manner as would be done in other methodologies to check

informal designs. Of course, the participants in the review or walkthrough

must be conversant In the formal notation and its semantics In order to verify

a formal design. If part of the design Is brought into question by this Informal

verificatlor. then formal checks could be Instituted to clarify the parts in doubt.

Such a two level verification approach focuses the mathematical exactness

of formal verification at the critical points of the design, thereby reducing

Its expense.

The Informal techniques could also be used whenever it Is necessary

to compare the formal documentation with other representations of the design.

For example. it may be necessary to review the formal design relative to

the provisional user's manual, to review the program code relative to the

formal design and Implementation plan, or to review the formal specification

relative to its associated natural language explanation.

We can also use formal methods in several ways to verity a design.

First, we can prove the correctness of successive vertical levels of the design.

In the limitative design.-the allowable conditions of the system (states of the

abstract machine) must be reduced In number or held constant ty each

successive vertical level. That Is, if S1. S2. Se.... represent successive

advancements of the state S. then state space (S3) contains a subset of

states in state space IS2). which contains a subset of states In S1)

(e. ...(S) _ {S} G {S (M). Advancement is the process of adding

restrictions or predicates to the state (le. S2 = S I P). Refinement is the

process of defining a new state space representation which Is homomorphic

to the previous state space. The relationship between successive vertical

decompositions. whether related by advancement or refinement, can be

expressed by a retrieval function. (See [Jones,801 for a detailed discussion

of retrieval functions or. similarly, see [Hoare.72; Sufrin.81a] for a discussion

of abstraction functions.) In advancement, the retrieval function Is the Identity

function restricted to a domain including only the new set of legal states.

The retrieval function in refinement embodies the homomorphism relationship.

With recompositIon. the retrieval functions can be used to relate the relevant

parts of the new state space to each of the component state spaces in the

same manner as with advancement or refinement. In all cases, it is possible

to demonstrate if a lower level design correctly models its predecessor.

The second method to formally verify a design Is to state and prove

, theorems about the behavior of the abstract system and compare the proven

behavior with the client's desire. This Is the mode which would be most

often used to answer client and management questions and to clarify potential

problems noted by informal verification techniques. Because of the

31 C- V T G -4 - W

relationship which exists between successive abstract levels, we choose the

most appropriate design level to determine the system behavior and then are

confident that this behavior Is manifested In all lower level machines unless

it is explicitly changed by a design decision. The greatest difficulty with formal

verification of this type Is that translating natural language questions to formal

theorems may be a complex process requiring a deep and detailed

..understanding of the relationship between the formalism and reality.

Finally. we can prove the correctness of a program implementation

relative to Its formal design. A proof that the program correctly Implements

the requirements Is the ultimate means of demonstrating reliability. Although

substantial effort has gone into making program verification a practical

technique, it is still not viable on large systems for two basic reasons. First.

the cost and complexity of formal program verification make it economically

Infeasible on a large - scale[Berg.82; Pressman.82. Secondly. program

verification assumes the appropriateness of the formal specification; however.

as we noted earlier, there is no formal way of validating that the specifications

" actually reflect the client's requirements. Therefore, a proven implementation

may be a correct solution to the wrong problem.

Because of these two problems. we choose to deemphasize the role

of formal program verification and reemphasize the other forms of verification.

- Additionally. we attempt to resolve the requirement validation problem by

, - Incremental requirement definition with client understanding and agreement.

That Is. If the Initial design Is so simple that it obviously satisfies the client's

needs and if the successive levels of design can be proven (by retrieval

functions) to accurately model that Initial design. then only the design changes

(advancements) need to be validated. Since these changes are done

Incrementally with constant client interaction and with properties of the design

proven in the abstract machine, the likelihood of solving the right problem

will be high. Therefore, we have shifted the emphasis of our methodology

... - to the very earliest portion of the Iifecycle -- the requirements definition and

* validation.

I1 Is the Intent of this methodology that formal verification will be

separated from the design process so that management can control these

two aspects Independently. Indeed, the formal verification will be done by

someone other than the designer (perhaps a mathematician) as an

Independent check of the design. However. to be of benefit to the designer

and the manager, all verification must be accomplished In a timely manner

and coordinated with the designer.JI

WZ0

One final point needs to be made about verification within this

methodology: management must control the degree of verification applied to

individual modules of the design and to the system as a whole. That Is.

formal methods can be applied at different degrees of rigor[Jones.80], as

can Informal methods. The manager must balance the type and degree of
these two forms of verification to best suit the project. We shall not attempt

to define a standard or even a minimum level of verification required for

all systems.

(The following are a few of the many possible references for the

mathematics of formal verification: (Abrlal,82]. [Berg,821. (Dahl,72].

(DiJkstra.76). (Grles.811. (Hoare.80J, [Jones.801. (Rlchardson.82]. (Sufrln.81c].)

11.3 Methodology Overview

This section will put the software engineering concepts discussed in

the previous section Into perspective by Integrating them Into a complete

methodology. The first subsection explains the methodology in terms of the
products of the design. As a cross-reference, the second subsection briefly

outlines the methodology by defining the activities of each design participant

during the software lifecycle.

We have divided the software lifecycle Into six phases for the purposes

of our methodology:

1. Requirements definition,

2. Problem decomposition.

3. Abstract design.

4. Detailed design.

5. Implementation and testing.

6. Operation and maintenance.

Within these phases we have included three baselines and five recommended

product review points.

Baselines are part of a management concept which has been proven

In large scale software development efforts -- It Is the

milestone/baseline/configuration management approach. Very briefly, this

approach advocates setting Incremental targets (milestones) In resource

utilization and development completion which can be compared against actual

results. As certain of these targets are reached, selected products of the

design (documentation. client agreements. design steps. code, etc.) are

verified and frozen (baseilned). They may then be changed only If approved

through the configuration management system.

A configuration management system views the product In design as

a configuration of components (modules). Before basellnlng the designer owns . -

a component; after baselining it Is owned by management. who then control

further changes to that component. In this way. the manager will always

be able to determine the current approved status (configuration) of the system.

He can also authorize Independent audits or additional reviews to recertify

the configuration. (Further details on the topics of milestones, baselines.

and configuration management can be found in most references on software

development management; see especially [Boehm.81] or (Jensen.79].)

The advantages of this approach to the control of the management

process. resource accountability, and product reliability are obvious. We are

convinced that such a capability must be woven into any methodology if it

Is to be practically viable. Because of the incremental design technique of

our methodology, milestones, baselines and a configuration management

system can be integrated directly into the methodology to the degree desired

by management. There are three points of control, or baselines, which are

Inherently part of our methodology -- the abstract design baseline, the

detailed design baseline, and the Implementation baseline.

a. The Products.

Requirement definition. The first phase requires the definition of user

requirements in Informal text. This documentation must correctly reflect the

.4. client's general needs; therefore, the emphasis will be on completeness rather

than detail. A more detailed representation of the client's requirements. if

available, would be useful to guide the designer In later phases but is not

necessary at this point.

Problem decomposition. The first formal product of the Ilfecycle is

a set of Initial abstractions, one for each horizontally decomposed module

of the system. With each Initial abstraction will be an allocation of the

requirements which must be satisfied by the following levels of design for

that module. Other documents produced In this phase include the initial

budget, the Initial milestones, and the definition of standards.

At the end of this phase is the first review -- the Decomposition

Review. It will assess the completeness of the requirement allocation, the

suitability of the Initial abstractions, and the degree of coupling among the

modules. As a result of this review, the designers should understand their

module's abstract starting point and how their design will interface into the

system as a whole. The participants in this review must include all of the

designers. as well as the manager and client.

Abstract design. The abstract design baseline occurs at the end of

the design phase from the problem decomposition to the point where details

specific to the client's problem (rather than a large class of problems) are

decided. The design specifications that occur In the abstract design phase

. are those that might be found In an abstraction library. Unlike the other

two, the timing of this baseline Is not precisely defined for all modules but

-- is based on the magnitude of the design problem.

The baselined products from the abstract design include the formal

design specification, the verification documentation, the client documentation.

and resource management documentation. One part of the client

documentation which Is baselined at this point is the provisional user's manual.

This user's manual embodies the basellned abstract design and extrapolates

that design to an Implementation based on the designer's current

understanding of the requirements. Naturally. this manual will not be accurate

In every detail since most of the detailed decisions have not been taken;

however. it Is an excellent opportunity to compare the perception of the

designer and the client, and force the client to begin to formulate the details

of his requirements. (Boehm calls this technique "anticipatory documentation'

and suggests that It can be highly effective in reducing lifecycle

-. costs[Boehm.81).)

At the end of this phase but before the documents are baselined,

the Abstract Design Review is held. This activity will review each formal

abstract design for:

- an evaluation of the design approach

-- likely requirements are still reachable In the design

-- the design will lead to an Implementable system

- consistency with the associated informal text

- compliance with standards

- an evaluation of the required formal verification.

o_.~ ~

.I

Additionally, this review will establish the feasibility of the system defined by

the provisional user's manual. This review is attended by designers, verifiers,

the client, and the manager. -Q

Detailed design. The design phase from the abstract design baseline

until just prior to implementation Is called the detailed design phase. It is

in this phase that the experience and ability of the software engineer pays

dividends. The main reason for this is that design (especially detailed) is

rather like a funnel, with each design decision narrowing the working area.

Consequently. the molecules (requirements) attempting to make their way

through the funnel begin to Interact and interfere with each other. Unless

- fruitful compromises are discovered among these molecules. some will be

thwarted as others take precedence. Since the specific requirements of a

system especially the non-functional requirements and Implementation factors.

are never mutually exclusive, the designer's difficulties are greatly compounded

by this need to seek compromises and trade-offs among the various factors

he must consider simultaneously. There Is a tool which can be used In

conjunction with this methodology which allows the designer to evaluate the

design compromises and assumptions he makes. This tool is called

prototypina_.

Prototyping in the context of this design methodology Is the creation

of a model which exhibits the salient features of the system being examined.
The model may be mental. as produced by the provisional user's manual

"-.

developed in the abstract design, or It may be physical, like the creation

of a display algorithm which is executable on the target machine and from

which display characteristics and efficiencies can be checked. In general.

we will speak of prototypes as models which are created in parallel with the

formal design process and usually on a smaller scale than a real

Implementation. (This is the second technique, which along with anticipatory

- documentation, will aid in the reduction of software costs according to

[Boehm,81]. Boehm calls extra products developed in parallel with the early

design process "scaffolding.)

As noted above, one of the advantages of prototypIng Is the Insight

provided to the designer concerning the appropriateness of the compromises

he has developed among the various requirements of the system. A second

advantage accrues to the client -- the prototype gives him a model of the

designer's system which he can compare against the system he desires.

----------]

-2

One form of prototype which can be used in this way is the 'What if...?

question. The client presents a situation and the designer determines exactly

how the abstract machine reacts to that situation by formally rephrasing the

question and defining the result from the system specification. The final

advantage is that prototype experiments can be used to answer specific

questions, such as: "Can our design be limited by this simplification and still

fulfill the client's needs?' Since ours Is a generally limitative methodology.

the answers to such questions are very important.

It is conceptually possible for the detailed design to be produced to

such a level of detail that the implementation process becomes a trivial

rewriting through the use of standard data structures and notational

transformations. However, In most Instances, the verifiability and ease of

implementation gained by such a minute level of detail is vastly overwhelmed

by the cost of undertaking such an Intense design effort. The design manager

must decide for each individual design problem what balance of cost and

formal verifiability Is most suitable. In other words, he must determine when

the marginal utility of a further level of detail is too low to warrant proceeding

further In the formal design process. In general. this will mean taking a

few relatively large design steps with another large step to an Implementation

In a structured language (even if the ultimate implementation is not in a

structured language.) At this point the gap between the formal (verifiable)

design and the implementation can be bridged with the Implementation notes

or by selection of previously verified algorithms from an algorithm library.

The implementation notes will Include the appropriate invarlants under which

the algorithms not yet totally specified must function and prototype experiments

demonstrating which algorithm(s) might best satisfy the client's requirements
4

in a specific module.

It Is during this phase that the test plans are developed for each

module and the system as a whole. The overall approach to test planning

depends on the balance the manager has struck between formal and Informal

verification; however, informal testing against non-functional requirements (eg.

implementation speed, useability, etc.), Integration testing, and testing of

abstractly specified or unspecified algorithms will always be necessary.

A test plan must Include a definition of the purpose of the test, the

method of testing (including whether formal or Informal), the inputs required.

the outputs expected. and the criteria for success. The outputs expected

should reflect the coincidence of the client's expectations and the behavior

formally predicted from the specification. It is important that the test planning

be accomplished In conjunction with the design because no one will have

a better feel for potential problem areas than the designer and his 6

Independent auditor. the verifier.

The baselined products of the detailed design phase Include formal

specification documentation containing an abstract design to display the

client's requirements. a test plan, Implementation notes to guide the

Implementation of those portions of the system which are not immediate from

the formal specifications, and the latest verification, client and resource

management documentation.

The Detailed Design Review assesses the detailed design with regard

* to:

- the design approach

-- the order- and structure of design decisions is appropriate

-- likely requirements changes, non-functional requirements. and

fine tuning can be accommodated in the design

- consistency with the associated Informal text

- compliance with standards

- compatibility with the provisional user's manual

- the appropriateness of the bottom level of design

-- state structure and operations are appropriate to the hardware

and programming language

-- step size to the implementation Is appropriate for all algorithms

This review must also evaluate the completeness of the test

planning/scheduling and the Implementation notes to be used in the next

phase. It is Important that all design participants, including the Implementers

and the client, are Involved In this review.

Implementation and testing. The Implementation baseline follows the

coding and acceptance verification of the system. The products frozen here

Include all previous design documentation, resource usage documentation.

verification results, final system documentation (eg. user's manual. operation

manual, maintenance manual, etc.). and the system code.

During this phase the products are reviewed twice to establish their

correctness. The first review, called the Software Verification Review.

establishes that the software Is ready for testing. The major task of this

review is to Insure that the software models the formal specification. For

- . - . ._- *.

small important modules this can be done formally; however, In general it

will be done using Informal review (walkthrough) techniques. The designers,

verifiers, and Implementers are the key participants In the Software Verification 0

.Review.

The second review of this phase occurs just prior to the Implemention

baseline. The System Review will establish that the development products

. are ready for release to the client. In this assessment the results of the

"' system tests are analyzed and the final user documentation is matched against

the software and Its formal design. The client serves as the approval authority

" In this review. After successful completion of this review, the system and

its documentation Is handed over to the client and maintenance personnel.

.

REQUIREMENTS DEFINITION ----- 1

PROB3LEM DECOMPOSITION
- Horizontal Decomposition
- Design Stye (creative/cumulatve)
- Initial abstractions
- Initial BudgetsiMilestones

ABSTRACT BASEL1INER
- Formal Design Specification0

- verti" decompositions o
advancement0

-* relnement
- horrzontal recompositlons p

4 - vitrfication DocumentationS
- ormal * .

+ correctness
* ateoms

-informal

+ walhthrougtis
*audits
*revriews

- Resource Management Documentation
- milestone reviews

- accounting data

- Client Documentation
- progressive design reviews
- preliminary u3er's manual

P
DETAILED BASELINE R

- Formal Design Specification TE
- vertical decompositions 0

+ advancement T
+ refinement y

- horizontal recompositlons P
E

- Verification DocumentationS
f ormal

+ correctness
* theorems

-informal

adits Ngh* adithruh
+ reviews

-test plan

-Resource Management Documentation
- milestone reviews
- accounting data

- Client Documentation 4I.
-progressive design reviews

- implementation Plan

P
IMPLEMENTATION BASELINE R

- Implementation Documentation
- Test Results
- Final Design Documentation

OPERATION AND MAINTENANCE

FIG. 11-3 -- The I-feCycle and the Development Products.

b. The Activities.

This outline briefly defines the activity of the design participants in

each phase of the software lifecycle. Those activities which are preceded

by an asterisk relate to the formal aspects of the methodology and are

presented in slightly more detail.

Requirements Definition

Manager

1. Collect requirements data from the client or systems analyst.

Problem Decomposition

Manager

a 1. Search the abstraction library. Find previous designs which might

be useful as a component design for the current problem.

a 2. Decompose the requirements. Identify and separate modules which

must be creatively designed from those which can use previous designs.

a 3. Define initial abstractions or reapplication starting points and

module requirements for each module.

4. Set standards:

a. documentation. Include the standard for the formal

specification and verificatlc(, documentation.

" b. vertical decomposition granularity for each module. Define

.:,. the limits of the vertical step size which are appropriate for the problem.

" c. level of final abstract for each module. Define the

" approximate level of design to be specified formally.

d. configuration management.

e. type/degree of verification for each module. Determine

If correctness verification Is required and at what level of rigor. Define fixed
review (walkthrough, audit) points and criteria -- Including the formal

specification reviews.

5. Develop initial budget.

a. allocate resources to modules for design.

b. staff project/modules.

6. Set initial milestones.

7. Chair Decomposition Review.

Client

1. Agree with Initial design.

Designers

1. Understand standards.

* 2. Understand abstract starting point for their module(s).

Abstract Design

Designers (for each module)

1. Vertically decompose and specify module through its initial abstract

steps. Provide the advancement and refinement steps for the module at the

desired granularity. Document each level and emphasize the design decisions

taken, their rationale, and alternatives considered. and justify the order of

decisions using the appropriate documentation convention.

2. Develop provisional user's manual for module.

Client

1. Agree with design decisions.
2. Agree with provisional user's manual(s).

3. Ask "What If...' questions.

Verifiers (for each module)

* 1. Do correctness verification of each level. If required by the ,

management standards, insure the correctness of the module specification

by continuous formal verification. This must be done to the degree of rigor

Indicated by the manager. Results of verifications are reported quickly to

designer. Significant problems are reported to the manager.

3•. =117

" 2. Prove theorems set by manager or designer. As a result of

Informal verification or questions about the behavior of the system, properties

of the system may need to be formally demonctrated.

- 3. Fill In design as required. The verifier may be charged with

finishing details of the formal specification left Implicit by the designer. For

example. the verifier can do trivial promotion of operations, add explicit

preconditions to operations as required by advancement, or do substitutions

and simplifications required by refinement since these do not involve design

decisions.

Manager

1. Monitor:

a. designer/client Interaction.

b. Intermediate resource usage.

" c. Intermediate design progress. To monitor the design he

can read the natural language or formal documentation of the design

decisions, set up Intermediate reviews or walkthroughs of the design

(specification), set theorems or ask questions about the behavior of the

* system, and review the formal verification documentation.

d. standards

e. milestones

2. Direct Integration of provisional user's manual.

3. Authorize and budget the production of prototypes.
* 4. Direct required horizontal recomposition. For those modules which

must be recomposed prior to the completion of their design, the formal

recomposition must be Initiated and resources reallocated to reflect a new

design structure.

Implementors

1. Produce prototypes as required.

Abstract Baseline

Manager

1. Review:

a. resource usage.

b. design correctness. Chair the Abstract Design Review.

2. Redefine:

a. milestones.

b. resource allocation and budgets.

3. Put appropriate documents under configuration control.

Detailed Design

Designers (for each module)
• 1. Vertically decompose and specify module through its final abstract

stage. Provide the advancement and refinement steps for the module at the

desired granularity. Document each level and emphasize the design decisions

taken, their rationale, and alternatives considered, and justify the order of

decisions using the appropriate documentation convention.
4.:•* 2. Develop test plan. The test plan will concentrate effort on areas

left abstract In the formal design and on areas of complexity in the

specifications. Test plans can indicate behavior predicted by the formal

design to various test cases.

3. Develop Implementation plan. The Implementation plan will provide

Insight to the implementors about the Implementation of abstractions remaining

in the formal design, possible Initializations, and potential techniques for

accommodating non-functional requirements. -

Client

I. Agree with design decisions.

2. Ask "What if... questions.

Verifiers (for each module)
" 1. Do correctness verification of each level. If required by the

management standards, insure the correctness of the module specification

by continuous formal verification. This must be done to the degree of rigor

Indicated by the manager. Results of verifications are reported quickly to

designer. Significant problems are reported to the manager.

2. Prove theorems set by manager or designer. As a result of

Informal verification or questions about the behavior of the system, properties

of the system may need to be formally demonstrated.

" 3. Fill in design as required. The verifier may be charged with

finishing details of the formal specification left implicit by the designer. For
example, the verifier can do trivial promotion of operations, add explicit

preconditions to operations as required by advancement, or do substitutions .O

and simplifications required by refinement since these do not Involve design

decisions.

Manager

1. Monitor:

a. designer/client interaction.

b. Intermediate resource usage.

" c. Intermediate design progress. To monitor the design he

can read the natural language or formal documentation of the design

decisions, set up Intermediate reviews or walkthroughs of the design

(specification), set theorems or ask questions about the behavior of the

system, and review the formal verification documentation.

d. standards.

e. milestones.

2. Direct Integration of module test plans and develop the test

schedule.
3. Direct Integration of implementation plans.

4. Authorize and budget the production of prototypes.

* 5. Direct required horizontal recomposition. The modules must be

recomposed prior to the completion of the design. The formal recomposition

must be Initiated at the appropriate time.

Implementors

1. Produce prototypes as required.

=7.

Detailed Baseline

Manager

1. Review:

a. resource usage.

" b. design correctness. Chair the Detailed Design Review.

2. Redefine:

*a. milestones.

b. resource allocation and budgets (allocate Implementation

resources).

3. Put appropriate documents under configuration control.

'Implementation and Testing

Implementors (for each module)

1. Develop code according to the formal specifications and the

Implementation plan. ;

Verifiers (for each module)

1. Test according to test plan.

2. Assess Implementation anomalies against the behavior documented

In the formal design.

1. Prepare final system documentation.

Manager

1. Monitor:

a. Intermediate resource usage.

b. Intermediate implementation progress/test results.

c. standards.
d. milestones.

2. Direct recomposition of Implementation modules.

3. Authorize and budget production of prototypes.

4. Chair the Software Verification Review.

implementation Baseline

Manager

1. Review:

a. resource usage.

b. Implementation correctness. Chair the System Review.

2. Put appropriate documents under configuration control.

Operation and Maintenance

Manager

1. Manage the transition to the new system.

2. Direct fine tuning and initial modification efforts.

3. Evaluate the project:

a. accuracy of resource estimates.

b. value of initial abstractions.

c. personnel critique.

d. general lessons learned.

4. Direct updating of the abstraction library.

Maintainer
* 1. Refer problems to the formal specifications. The behavior of the

formal design will Indicate how the Implementation should function and will

determine If the problem Is one of Implementation or design.

2. Cost of design adaptation Is estimated based on resource data

attached to specification design levels.

3. Maintain the specifications.

-'.

•]
11.4 A Small Example.

A further explanation of the proposed methodology is woven into the

very small example development which follows. This development is meant

to be a gentle Introduction to the style and structure of the design and

specification techniques only. In order to keep it small, many of the decisions

have been made for simplicity rather than for a practical reason. The reader

should keep in mind that the methodology proposed In this thesis was

designed for large scale system developments and, hence, It may seem

overbearing on such a small example. For purposes of introduction, the

horizontal and vertical decomposition done here will generate module

granularity which Is much smaller than is normally practical.

A management -tool which is commonly used in the documentation

of a design process is a standard form or documentation template. The

exact format of the template is not nearly as significant as the general

discipline which Is Imposed by Its use and the management control which

it allows. The template Is a checklist to remind the designer of his obligations

in producing documentation and In maintenance of the management defined

standards for the design. For the manager, it differentiates the various design

steps to allow incremental control of the formalism, standards. and resource

-, utilization.

Of course, any template usage is complete only if natural language

explanatory text Is presented to interpret the mathematics. This interpretation

should be geared to the future audience -- the design manager, the software

maintainer, the Implementer, and other designers. Although this text Is not

" written specifically for the client, It is normal to use these textual explanations

*. as the basis for the user documentation.

A blank sample of the documentation template used In this thesis

Is presented on the next page. The sections of the template are explained

as they are used In the following simple design example. Each use of the

template represents a single level of vertical decomposition.

;4=0

.4a

NAME

Management Data:

Author:

Date Started: Date Completed:

Resources Expended:

Project Name:

Verification Documentation Accomplished:

Client Documentation Accomplished:

Basis:

Library:

Prior:

Forward:

Comments:

Requirements/Design Decisions:

S.

Auxiliary Definitions:

State (ComponenO Definition:

Observation Definitions:

Operation Definitions:

FIG. 11-4 -- Design Template

:41

Requirements Definition

Design and implement a document display system with line editing -4

features for a personal computer. The system will allow textual scrolling.

plus simple user commands for the creation. deletion, and insertion of lines

of text.

o .

Decomposition

This problem decomposes easily into two main modules -- the 0

document display and the document editor. An appropriate abstraction of

the document editor currently exists In our expanded set theory; therefore,

only the document display module needs to be creatively developed. The

lower level concerns such as hardware, environment, system, and user

interfaces exist as components of almost every system; therefore, we refer

to them as standard components. These standard components need not be

explicitly defined In the decomposition step and will commonly be recomposed

in the final levels of design. The following figure represents the decomposition

for this simple problem.

L DIIPLA 2. DITO

S3. "MN

ABSTRACT BASELINE

-1 .06-0

VE.RTICAL
.. . 4. MACHINE ...

=ECOKOMPOSED/RECOMPOSYED MODtUE .

STANDARD

DECOMPOSED .,.-. , MODIES SYSTEM

,MOU.

DETALE BASELINE
Fi..........................

FIG. 11-5 - Problem Decomposition. --

.1

.4

3

6

ABSTRACT DESIGN

~.- C.

.4

09

.49
.9-S.

9*99~ .49

0,

--- NI S.
9%

94~9' -

S.

90

-4

.4

.4

1. The Display.

This Is the first of our horizontally decomposed problem components.

DISPLAY

(DISPLAY is the name of this vertically decomposed module.)

Basis:
Library: Schema combinators

We must look to our specification library to find the meaning of any

schema combinators which are used. The remainder of the operators are

from the standard extended set notation (*Z*); these operators can be

referenced in (Abrial.80b], [Abrial.821, and [Morgan.82a], with a brief overview

in Appendix A.

This section will facilitate maintenance of the design by creating a

linked list of the design levels.

Comments:

,- This specification defines a very simple, one document file, any part

of which can be displayed to the user. The user can control the parts of

the document that he sees.

This section explains the features included In this level of design and

relates this level to the previous one.

Auxiliary Definitions:

-. Here we define any required background mathematics or environmental

attributes such as generic parameters.

a. lines is ABSTRACT

.4

At this abstract level It Is not Important what the exact nature of a

document line will be. It may be a series of blanks and dots, a succession

of different colors or hues, or, more simply, a sequence of alphanumeric

characters. Until we give a specific definition to lines It will be a generic

variable.

IIII

Stale Definltion:

We have defined in this section the schema representing the abstract

machine state space. The definition given is based on the background and

,, environmental attributes defined above.

DISPLAY

doc ,v 1 -. lines

displayed P(JV1)

The document is a partial function from line numbers to the lines

they represent. The lines selected by the the user are designated in

displayed.

Observations:

This section gives us the opportunity to create windows onto the

machine so that we can look at (but not affect) its various interesting parts

at any time while it Is running.

* *DISPLAY

D SPLAY -

D I SPLAY'

eDISPLAY' M eDISPLAY

This Is the generalized null operation on which observations are based

Cie. the state is not affected by the observation.) Henceforth, this standard

0 schema will not be explicitly defined.

-.- , -. .- . .-.---. '.... . . .

a.

APPEARANCR

ODISPLAY

picture' IV lines

picture' - doc P displayed

The user will see that portion of the document which he has

designated to be displayed. Note that this observation could also have been

made a derived component of our state space and would have been

automatically updated with each state change. Choosing to make the user's

picture an observation forces us to request a picture update each time the

state changes -- and that is more typical of what actually happens in a display

system Implementation.

Operations:

Here we represent the transition functions (events) which cause our

abstract machine to move between points in the state space.

In this module of the specification, we are concerned with what the

user sees of the document, not in changing the document itself.

Consequently. we do not want the state component doc to be affected by

the following operations. Therefore. we adhere to the rule that operations

should be defined on the lowest reasonable state component (in the following

case. displayed) and should not be promoted to the full state until

necessary to complete the design.

ADISPLAYED

displayed,

displayed',

lineset P(jV1)

status' STATUS

status' - SUCCESS

This is the delta (or change) operation which provides a shorthand

notation for our operation definitions.

The status output will allow us to provide for any error conditions

which may be necessary. Advancement of the design may require us to

restrict the domain of our machine operations; however, our machine must.

in the end, be robust enough to allow all operations to be attempted from

any element of the machine state space. Hence. error results are a required

aspect of our design. The set of status conditions, STATUS, is a standard

set which cannot be fully specified until the design is complete. SUCCESS

is an abstract element of STATUS which signifies that the operation was

attempted from a state which satisfied the operation's preconditions and,

* therefore. that the operation succeeded.

a.

ADDD I SPLAY

ADI SPLAYED

displayed' - displayed U lineset

This allows more lines to be designated as visible to the user.

b.

DELETED I SPLAY

AD I SPLAYED

displayed'- displayed - lineset

This allows lines to be removed from the set of lines displayed to

the user.

,.-

R-7 . r:

DISPLAY1

(This level of vertical decomposition is an advancement of the previous ;

design level.)

Basis:

Library: Schema combinators

Prior: DISPLAY

The abstract machine developed here will be based on the abstract

machine developed In DISPLAY.

Comments:

We now make the specification less abstract (reduce the family of

systems specified) by advancing the theory. We will require that all legal

documents consist of lines whose line numbers are consecutive.

Requirements IDesign Decisions:

This section Informally enumerates the design decisions which will

be formally reflected In this design level. All significant changes to the

abstract machine and the rationale for these changes should be stated

informally here.

S1II The line numbers In a document will be consecutive, beginning at

one.

State Definition:

[1]J DISPLAY1 a DISPLAY I doc e SEQ[lines]

The type of the state component doc is changed from the general

partial function to the sequence partial function, giving the consecutive line

numbers that we desire.

Notice that the formalization of the design decision is annotated by

the number corresponding to the Informal description of that design decision.

The observation and operation defined In DISPLAY are Implicitly

updated by this change to the abstract machine. In general, the precondition

required by an advancement such as this can be determined by forcing the

new postconditions back through the operations and observations.

DISPLAY2

Basis:

Prior: DISPLAY1

Comments:
We can now make more precise the arrangement of the document

lines as displayed to the user. The pictt-re a user would most naturally desire

to see Is one which displays a consecutive area of the document.

Requirements I Design Decisions:

1 The area to be displayed will be a consecutive area of the document.

State Definition:

DISPLAY2

DISPLAYI

I1i (3m,n :I) (displayed- m..n)

This slightly less general state requires that the lines the user will

see are consecutive.

..

DISPLAY2A

(This vertical decomposition Is a refinement of the previous design.)

Basis:

Prior: DISPLAY2

Comments:

Even at this very abstract level it is possible to Introduce a refinement

which will aid the understanding and perhaps Increase the efficiency of an

eventual Implementation. This refinement introduces the end points for the

set of consecutive lines designated by displayed.

State Definition:

DISPLAY2A

DISPLAY2

start jV

stop IV

displayed - start..stop

This definition of start and stop allows us to either show or forget

the potentially space-inefficient component displayed -- that Is.

displayed has become a derived component. Derived components can

be used or Ignored as required by the Implementation.

2. The Editor.

This is the beginning of the second horizontally decomposed -..

component of the system. the editor.

EDITOR

Basis:

Library: SEQ / Schema combinators

Prior: DISPLAY (Auxiliary Definitions)

Only the auxiliary definitions of DISPLAY (in this case the fact that

lines is abstract) are required as the basis of this level; the DISPLAY

abstract machine Is not used here.

Comments:

This abstract specification represents the simplest possible editor.

It is a portion of the operation set from type SEQ. For ease of reference.

the sequence editor is extracted from the library and reproduced here.

State Definition:

EDITOR

doc SEQ[ines]

The document is simply a list of lines.

Operations:

AEDITOR

EDITOR

EDI T TOR'

spot :N 1

status' STATUS

spot e l..length(doc)

status' - SUCCESS

The delta operation requires that the line number selected for editing

correspond to an existing line in the document.

BADSPOT?

OEDITOR

spot IV1

status' STATUS

spot l 1..length(doc)

status' - ERROR1

where ERRORI a "The designated line does not exist

in the file and cannot be edited."

This is the first Instance in our design where an error condition Is

required. Error conditions will direct that a status other than SUCCESS

be output. As a rule, we will define the appropriate user error messages

as the error conditions are specified. This is done because the designer

has a much better perspective of the error cause than the Implementer and

will generate more meaningful error messages than would be possible at

implementation. Error conditions will normally not result In a change in the

machine state but are simply observations of the machine (null state

transitions).

The error condition presented here results from an illegal line number

being designated for the editing operation.

a.

INSERT

-EDITOR

line lines

doc' - insert(doc,spot,line)

This operation adds a new line at the selected spot and moves all

following lines ahead one position in the document.

The complete (total function) INSERT operation requires the addition

of the error condition BADSPOT?. Therefore. the complete operation would

be:

INSERT a INSERT V BADSPOT?(...

b.

DELETE

AEDITOR

doc' = delete(doc,spot)

DELETE removes the indicated line from the document and closes

the hole caused by the deletion.

This operation also requires the addition of the error condition.

DELETE a DELETE v BADSPOT?

C.V

ADD

ED ITOR

ED ITOR'

l ine lines

status' STATUS

dc - doc * lne>

status' -SUCCESS

This operation a~dds a new line at the end of the document.

3. The Combined Module.

This level rejoins the two horizontally decomposed modules just

designed.

COMBINED

Basis:

Prior: DISPLAY2A I EDITOR
a

Comments:

This specification recomposes the display and editor modules and

completes the abstract design of the system. This module will be the abstract

design baseline and, therefore, will consolidate the design as It currently

exists. That means that all observations and operations must be explicitly

promoted (If required), advanced, and refined to the current abstract machine

level so that they can be verified.

Requirements / Design Decisions:

(1] The length of the document must be limited.

Auxiliary Definitions:

a. maxdoclength e I 1

The document length has an upper bound which Is constant but has

not yet been determined.

State Definition:

COMB INED

DISPLAY2A

ED I TOR

fi] length(doc) 4 maxdoclength

which we can expand to:

COMBINED

doc SEQ [lines]

start IV

stop IV

%%% derived

displayed P (. 1)

[1] length(doc) 4 maxdoclength

displayed - start..stop

Note that the document from the editor and the document defined

in the display module have been merged In the combined state space. This

can be done quite simply because the docs were both of the same type

(. SEQ[lines]) with no contradictory environmental attributes (Ia. lines

was defined consistently In the two cases). In addition to merging the state

components, this new schema includes the conjoined axioms of the editor

and the display modules.

ObservaUone-

a. The appearance observation is now:

APPEARANCE

'S, OCOMBINED

picture' :V -. lines

picture' - doc P (start..stop)

This observation has been promoted to the new combined state from

the DISPLAY state. Additionally, the derived component, displayed. has

been replaced by its meaning. start. stop.

Operations:

All previous operations are consolidated and produced as functions

of the appropriate state component:

ASTART-STOP_.___,-

start,

stop,

start' ,

stop' IV
lineset' P(/IV)

status' STATUS

status' - SUCCESS

In the first two operations, we need only substitute for the derived

component and use this new delta function which is equivalent to the previous

ADISPLAYED.

a.

ADDD I SPLAY______

ASTART-STOP

(start'..stop') - (start..stop) U lineset .

This is the updated version of the operation from the DISPLAY module.

Notice that the decision to display a consecutive area of the document

constrains the new set of lines which can be added by this operation.

DELETED ISPLAY. _._"_-"

ASTART-STOP ta te

(start'..stop') -(start..stop) -lineset

11X 1.5i s .1

This Is the updated version of the operation from the DISPLAY module.

The set of lines removed from the display must result in a consecutive display

area. A

* C.

INSERT

ISREDITOR

length(doc') 4 maxdoclength

The previous INSERT definition had to be given the appropriate

preconditions to adhere to all restrictions set in subsequent advancements

of the machines. In this case the precondition is designed to make the state
transition preserve the document length limit.

DOCTOOLONG?

OEDITOR

status' STATUS

length(doc) - maxdoclength

status' - ERROR2

where ERROR2 a wThe document is already at its

maximum length..

This error condition specifies that the document cannot be extended

beyond the maximum length which has been set for It. Notice that we have

not had reason to promote the editing operations past the EDITOR abstract

machine, so this error specification is also presented at the EDITOR machine

level.

With this error condition, the Insert operation becomes:

INSERT a INSERT V DOCTOOLONG?

* d. DELETE aDELETEDTO
EDITOR

The previously defined DELETE operation Is unaffected by the

* advancements.

e.

.0 ADDl

ADEDITOR

length(doc) < maxdoclerigth

This operation Is updated to maintain the document length limitation.

The total operation, Including the error condition would be:

ADD aADD v DOCTOOLONG?

- 4 . 4 - 4 -... --.. - . . . -4 - - - -.. -7 4 .

DETAILED DESIGN

47~~- 1. ". 7,7

COMBINEDI

Basis:

Prior: COMBINED

Comments:

Up to this point the design has been very abstract with no decisions

made which were specific to this project. One of the ways the design was

kept abstract was by making It generic on lines. We will now begin the

detailed design for our specific problem by defining this generic parameter.

Requirements I Design Decisions:

n'[11 Each line In our document will be composed of a sequence of

characters.

121] There must be a limit on the maximum length of a line.

13] We must be able to construct new lines for insertion into the document.

Auxiliary Definitions:

a. chars is ABSTRACT

We will not yet define what a character will be in tHis system.

b. lines a SEQ[chars] E1

Every line in the document is a list of characters.

c. maxlinelength e IV-

There Is a constant which represents the maximum length of any line.

-1 .

State Definition:

-9
COMBINEDI

COMB INED

newlirte lines

121 (Vx 1 .length(doc))
(length(doc(x)) < maxlinelength)

-21 length(newline) (maxlinelength

This state demonstrates the first Instance where the design progresses

in a constructive rather than a limitative fashion. We have found It necessary

to add a new component. newline. to the abstract machine. This new

component represents a new line which we can add to the document. All

lines. including the new line, must adhere to the line length restriction.

Operations:

a. 1311 ;

ADD-CHAR

newline,

newline' : SEQ(chars]

nextchar chars

status' : STATUS

length(newline) (maxlinelength

newline' - newline * <nextchar>

status' SUCCESS

This operation allows us to add characters to the end of the new H

line. In this way, we can create any sequence of allowable characters as

a line to add to the document. In order to add this newly created line to I
thiimut1h ibsanh limita.n

_ - -.- J7 -FW7 7

LINETOOLONG?

newline,

newline' SEQ(chars] .

nextchar chat

status' STATUS

length(newline) -maxlirielength

status' -ERROR3

where ERROR3 a "The new line is already at its

maximum length.*

The error condition LINETOOLONG? Is required for possible attempts
to add an additional character to a new line which Is already the maximum
length.

The total operation becomes:

ADD-CHAR aADD-CHAR v LINETOOLONG?

4. The Machine Module.

- This level will join standardly decomposed aspects of the design (such

" as hardware, environment, and user components) to the current design.

MACHINE

Basis:

Library: Schema combinators

Prior: COMBINEDI

Comments:
This specification will add the machine and environment Interfaces

" to the design. The decisions taken here are not complete or realistic but

serve to reduce the complexity of the example.

Requirements I Design Decisions:

[111 The character set of the target machine. LSI-11. will be used.

ff2j The display surface Is 24 lines of 80 characters (as required by the

target VDU.)

131 In order to avoid panning, the maximum line width should be the same

, as the screen width.

141 The maximum document length Is 50 lines due to the target machine

memory limitations. (We will assume no disk storage Is available.)

• "5J All modifications of the document will be done on line 12 of the screen.

* [6] The user's display will show as many of the user selected lines as

possible while ensuring that one of the selected lines is displayed at the

- action line of the screen (line 12).

Auxiliary Dfntos

* a.

char a (a,b,c,d,e,f,gth, irj ,kr1,m

nop,q, r , , t, U VWX,Y, z,

A,B,C,D,E,F,G,H, I,J,K,L,M,

N,O, PQR,S ,T, U, V9 W,X,Y, Z,

1,2,3,4,5,6,7,8,9,0,

The allowable character set has been prescribed by the target

machine.

*b. maxlinelength a 80 [2,3]

screenlength a 24 121

The display surface Is fixed by the target machine.

C. maxdoclength a50 141

The constant maximum document length has been set.

d. actionline a12

-The physical screen line In which all document changes will be done

has been set as twelve.

- State Definition:

MACHIINE

- COMB INEDI

cursorspot iV

4 [6 1 start I

stop ulength(doc)

ff 15 &6] (doc 0 0

cursorspot e (1. .length~doc))

(doc 0)~ (cursorspot -0)

This new state space *recomposes* the previous state with the

required standard components of the machine or machine environment. In

this simple case. only the notion of a cursor position on the document Is

required; In more complex systems. such components as printer files, screen

* representations, main or secondary storage representations, keyboards. etc.

may be required.

For this design. cursorspot will always point to the document line

which appears at line 12 of the screen.

Observations:

a.

* ~SCREENOFFSET_________________________
4MACHINE

picture iV-. lines

screens JV -4lines

screen'- picture 0

(shift(actionline-cursorspot) P' (1. .screenlength))

b. SCREENAPPEARANCE B APPEARANCEMHINE ; SCREENOFFSET

This new observation builds on the previous appearance observation.

Now, given the current machine state, we can determine what line of the

document (if any) is visible on each line of the VDU. This Is done by

restricting the previously defined picture to those document lines which

will fit on the 24 lines of the screen, based on the knowledge that the

cursorspot line always appears et line 12 (actionline) of the screen.

The observation APPEARANCE referenced in SCREENAPPEARANCE

has been trivially promoted the the current state as Indicated by the MACHINE .

subscript.

Operations:

a.

CURSORMOV•

cursor spot,

cursorspot' :V

amount INT

status' STATUS

(cursorspot + amount) e (1 .length(doc))

cursorspot' - cursorspot + amount

status' - SUCCESS

With this operation we can move the cursor position in the document

in either direction as long as it stays on a line which has been selected

for viewing 1611. This is the specification of the standard cursor movement

operation adapted for our specific use.

4..

OUTOFVIEW?

cursorspot,

cursorspot' IV

amount INT

status' STATUS

(cursorspot + amount) %d (1. .length(doc))

cursorspot' cursorspot

status' -ERROR4

where ERROR4 a "The movement cannot be done because

it would not leave a line visible at the actionspot."

This Is the error condition corresponding to an attempt to move the

cursor position such that It wouid not point to a visible document line.

The total operation would be:

CURSORMOVE *CURSORMOVE v OUTOFVIEW?

.L1

MACHINE1

Basis:

Library: Schema combinators

Prior: MACHINE

Comments:

This level of specification will design the actual user commands

required In the system. These commands will be based upon previously

designed state transition operations. This specification represents the detailed

design baseline and will be the final groundwork for the total system design.

Requirements / Design Decisions:

I[1i The following user commands will be allowed:

a. insert a line

b. add a line

c. delete a line

d. scroll up one line

e. scroll down one line

f. create a line with which to update the document

State Definition:

Unchanged from MACHINE.

Observatloois:

Unchanged from MACHINE.

Operations:

I1 All user required commands must be promoted to the MACHINE state

space and must be made total functions with the addition of the necessary

error conditions.

a.

INSERT

AMACHINE

IN [line/newline; spot/cursorspot)

status' - SUCCESS

(cursorspot' - cursorspot A

newline' - (>)

status' 0 SUCCESS

eMACHINE' - eMACHINE

The Insertion operation places the new line in the document at the

position which appears at the actionline of the screen. The newline

component is cleared to allow another new line to be created.

b.

* ADD.

AMACHINE

ADDcoMBNED (line/newline]IONE

status' - SUCCESS

.(cursorspot' - length(doc) A

newline' - <)

status' 0 SUCCESS -

eMACHINE' " 6MACHINE

The add a line operation appends the new line to the end of the

document. The newline component is then cleared for reuse. The newly

added line will be shown at the actionline of the screen.

"..

C.

DELETE

AMACHINE

LPZLAETEEDITOR (SPOtCrrSp)

status' - SUCCESS

(length(doc) >cursorspot

cursorspot' -cursorSpot A

length(doc) - cursorspot

cursorspot' - cursorspot -1 A

newline' - newline)

status' 0 SUCCESS

eMACHINE' - MACHINE

The delete operation removes the document line visible at the

act jonline of the screen. If a delete Is attempted from i null document.

then an ERRORi status will be returned. A different error condition for this

specific problem could have been added at this point but was not for

simplicity.

d.

SCROTT.

AMACH INE

CURSORMOVEMHN

* . status' -SUCCESS

(doc' -doc A

newline' newline)

status' 0 SUCCESS

eMACHINE' - MACHINE

This operation can be used to scroll the screen any amount. either

* up or down. In order to specify the required user commands we limit the

scrolling to one line up or down.

SCROLLUP a SCROLL (amount/-i]

SCROLLDN a SCROLL [amount/1]

e. ADD-CHAR a ADD-CHARMCHNE
MACHINE.

The new version of ADD-CHAR does not affect any of the state

components except as specified In the original version of the operation.

Therefore, the operation Is trivially promoted to the current state as denoted

by the MACHINE subscript.

such as this one.

Although Initially specified, the user view changing operations

ADDDISPLAY and DELETEDISPLAY have not been promoted since

subsequent user requirement clarification has removed the need for them.

By leaving these two operations In the abstract design documentation, we .'<

have provided a head start for likely future system adaptations.

p. *

dJ

-ppJ

ppi:.'

* * -2 I- .]

5. The System Module

This level recomposes the designed machine into the remaining

aspects of the complete system design.

SYSTEM

Basis:

* Library: Schema combinators
Prior: MACHINE1

Comments:

In this specification, the abstract machine will be placed into the

user's system to complete the design. In this simple case, no changes will

be required In the state space but several new observations and operations

are required.

Auxiliary Definitions:

a. possiblekeys is ABSTRACT
.s

We will not need to explicitly define all of the keystrokes that are

possible on our target machine.

b. legalkeys * chars U (scrollup,

scrolldn,

insert,

add,

delete,

quit)

legalkeys g possiblekeys

The keystrokes allowed by our system are explicitly defined and are

a subset of all possible keystrokes. Any keystroke not in the set of legal

keys will be an error.

State Definition:

Unchanged from MACHINE1.

Observations:

a. -

USER

4MACHINE

key' possiblekeys

status' STATUS

key' e legalkeys

status' - SUCCESS

The system user Is specified as an abstract relation. Such a view

of the user does not prejudice the system against unlikely (but nonetheless

possible) user inputs.

*: BADKEY?

-MACH INE

key' possiblekeys

status' STATUS

key' d legalkeys

status' - ERROR5

where ERROR5 a "The input command is not valid in

this system."

If the user Inputs an illegal key command. this error condition would

result.

..

USER a LOOP(BADKEY?); USER

The total definition of the user requires that a legal keystroke should

ultimately result or the system would never do anything (else) useful.

Operations:

4 a. SESSION a INITIALIZE; EXECUTE; TERMINATE

The running of a non-continuous (le. terminating) system Is called

a session of the system. We normally specify that a session Is composed

of three phases -- initialization, execution, and termination.

b.

INITIALIZE

MACHINE'

doc'

newline' - 0

cuzsorspot' - 0

The abstract machine Initialization must produce a legal machine state

for the remainder of the design to be consistent. In more sophisticated

systems, part of the machine Initialization values may come from the

environment (eg. disk files, database. etc.) which exists between sessions. For

this system, we have designated a starting state with an empty document.

c. EXECUTE a SCREENAPPEARANCE; USER;
LOOP (OPERATE; SCREENAPPEARANCE; USER)

.4..

Executing the system requires that: 1) the screen picture be shown

to the user, 2) the user select a legal system command. 3) the system

transform the state according the appropriate state operations, and 4) the

system Iterate the previous three requirements until termination. The fourth

requirement Is the responsibility of the OPERATE operation.

d.
* OPERATE

.MACHINE

key legalkeys

key # quit

(key e char) ADD-CHAR [nextchar/key]

(key - scrollup) SCROLLUP

(key - scrolldn) SCROLLDN

(key - insert) INSERT

(key - add) ADD

(key - delete) DELETE

This operation represents the driver module of the implemented

system. It will execute any legal series of user commands and terminate

the session when so directed by the user. Mutual recursion between the

OPERATE and EXECUTE operations provides the Iteration that was noted In

requirement four of the previous paragraph.

"' e. TERMINATE a MACHINE

The terminate operation will normally define the allowable criteria for

termination -- that Is. It will specify the machine states In which termination

may (or will) occur. The terminate operation will also define which portions

of the machine state will continue to exist (in the environment) between

sessions.

In this simple system. termination may occur In any legal machine

state and the system Is entirely destroyed at the end of each session.

Although we do not Intend to pursue this small example of the

methodology to an Implementation, it should be obvious at this point the

aspects of the design which still must be decided prior to an Implementation.

S- ..For example:

1. how are errors displayed?

2. what is the screen display algorithm?

3. how and where Is the cursor to be displayed?

4. how is the new line to be displayed?

5. what is the relationship between physical and logical keys?

...physical and logical screen?

8. which programming language Is to be used and (as a consequence

of that decision) what will be the implementation structure of the document?

These are the types of decisions (eg. algorithms, user interfacing.

non-functional requirements, etc.) which are discussed in the Implementation

Plan.

7.% ~..-.-

S|

o-

'-4.o

CHAPTER III

A Family of Visible Filing Systems

Prior to applying our proposed software design methodology to the

development of an Information sharing, windowing screen editor we will present
the design for a family of visible tiling systems. This abstract design Is typical

*of an entry In our proposed library of high level design abstractions. This
high level design will help us Intelligently decompose and plan the design

* strategy for the case study which follows In Chapters IV and V.

111.1 Introduction.

Computers are commonly used to store documentary Information. any
part of which can be made visible on a CRT screen or printing device.

The software system which provides this Information display Is called a visible

filin system. Some systems also allow the viewing screen to be partitioned

so that various documents can be made visible In any desired arrangement

on the screen. Such a system Is called a windowed screen display manager.

Other systems allow Information (figures, text, etc.) to be shared between

documents In a convenient and manageable manner. These systems are
* called Information sharing filing systems. The systems we are going to specify

here are Information sharing, windowed, visible filing systems.

This family of display and filing systems Is an Important one to define

In a reusable and consistent manner because It has a very wide applicability

but Is not yet totally understood or exploited. As (Meyrowitz.8 ii puts It:

*The window manager Is an emerging computing paradigm which allows the
user to create multiple terminals on the same viewing surface and to display

All and act upon these simultaneous processes without loss of context.... Most
.,.A (current) Implementations and their associated designs are not readily

available for common use; extensibility Is minlmai.0

Several attempts have been made at defining such a system:

(Carlson.82; Guttag.82; Hoare.8 I: Hornlng,79; Mallgren.82; Meyer.82;

- * * **.'.. . - - **w- -. |

Meyrowltz.81; Richardson.81' Sorensen). Many of these are too concretely

specified to be reusable or extendable to other design efforts. Few allow

information sharing between documents -- an important aspect of our system.

The development presented here is based upon [Hoare 81: Richardson.811 and

represents a very flexible family of windowed filers with information sharing

and (potentially) graphical capabilities.

111.2 Synopsis.

Sharing information between documents one has created and stored

is a very useful but potentially very complex concept. The main advantage

of sharing information is that a document change can be propagated to every

other occurrence of the shared information. On certain document areas.

which we will call the masters, the information has been printed and can

be seen immediately. Other documents areas, called the slaves, contain only

references to the information on the master document areas. These

references must specify where the Information is to appear in the slave area

as well as what information is to appear there. Of course. the information

appears in the proper position of a slave document area only if we look up

the referenced information on the master area. This type of referencing is

commonly done in books: for example, with footnotes specifying where the

master material is to be found and a special symbol (eg. a footnote number)

marking the spot where the shared information should appear (after look up)

,, in the text.

* +
THE FULL RANGE OF SOFTWARE ENGINEERING PROBLEMS. EACH FIGURE MUST

.4".

4Sh2 [WARTZ, 63,PAGES 20-23, FOR THE COMPLTE LIST OF PROBLEMS.

FIG. I1-1 -- A Reference.

Before discussing further the concept of information sharing, it is

necessary to define how we represent the information In our system. Consider S

a filing cabinet containing many large sheets of colored paper. Each sheet

of paper is a document and is given a unique name. On each of these

documents Is a coordinate grid so that the location of every speck of

information on each document can be Identified by a coordinate. In other

words, a reference to the filing cabinet with any coordinate location on a

specific document should show us what speck of information appears there.

FiH. 211- Th i Cn

douetcoriaeo-urfln aintadi sol o ate hte

8 UIT INV

isimmediately.a FIG. 111h2 fr The Filing Cabineti forlo -ig p .

i'i: "Of course, we should be able to find the.appearace. atech :::
j-document coordinate of our filing cabinet and It should not matter whether _

• a reference to shared Information defines the appearance or If the appearance

; Is Immediately available. Therefore. we need a technique for looking up a ".i

reference one if the coordinate we wish the appearance of Is a slave. The

technique used is called a projection. A projection is a function which

specifies a master coordinate for each point in a slave. The appearance

of any coordinate which Is sharing Information with a master coordinate must

be the appearance of that master coordinate; that explains how changes to

shared Information are propogated to all slaves.

- .-- . -'-.-' . - -

° • -I

DOCUMENTS

SLAVE AR.A

MASTER AREA

.4. DOUENTC ; il

AREA I FIND APPEARANCE AT ANY POINTIN SLAia FOLLOW PROJECTION TO THE
AFPSPMAX POINT IN TIE MASTER "" 4.-

FIG. 111-3 -- Projections.

So far. the system Is simply a filing cabinet which contains all of ..-

the Information we have created and stored, and a projection to act as look

up Instructions If there Is shared Information In one of our documents. But

what If we need several different look up Instructions for different information

sharing activities? Certainly, there is nothing to prevent us from having

numerous projections. P1, I 2, P 3 , ... , 1Pn" for all of the different

slave/master sharing arrangements we require in the filing cabinet. The only
complication arises when two or more of these projections provide look up

Instructions for a particular coordinate -- which Instructions should be heeded

In that case? The solution Is to list the projections In order of precedence
• .. so that It will be obvious which projection instruction must be followed if there

Is a choice. For example, with the list of projections (P 1 , P2 . P3 . P4 "
Ps' . .> and If a coordinate location appears in the slave of both P 2

and P.. then P5 is the look up Instruction which will be used for that location

since it appears later in the list.

How, then, do we maintain the precedence relationship we have

developed in the projection list and still produce the single projection needed

as a look up instruction to find the Information appearing at any point In

the filing cabinet. The answer is to flatten the list of projections so that

,, only the look up Instructions prescribed by the projection with the greatest

precedence is Included for each coordinate. It should be noted that reordering

of the projection list may significantly change this flattened projection and,

therefore, the appearance of the entire filing cabinet.

WVWROECIONI PRECED.-N.E-
,CNEW!ST MRE snumooM~r

'-WI

.. -

PUCTION UISTE 0Pj P2 -P3 >

FIG. 111-4-- Flattened Projection Ust.

But there still may be a problem -- If the master of a projection

Is also the slave of a projection in the list, then a single application of the

flattened projection will not give us the appearance we desire. That Is. if

in looking up one reference we find a further reference, then we must also
have look up Instructions for that second reference.

.-.

DOOAW 1 DOOCUMENT 3

P11P

FIG. 111-5 -- A Projection Network.

This time the solution to our problem is to apply the flattened look

up Instructions the exact number of times required for the coordinate whose

appearance is desired. So. with our filing cabinet full of Information and with

that Information being shared in any desired arrangement. we are able to

find the appearance of any point on any document In the filing cabinet.

The only useful capability which we do not now have Is changing the

appearance of information as it Is being shared. For example, it might be

useful to Italicize information that Is shared from another document to show

that it is not original Information. This can be done quite easily with a filter.

A filter will replace any possible speck appearance with a desired new

appearance according to the user's orders. Each slave in the flattened

projection can be viewed through its own filter so that any shared Information

will appeared altered as appropriate.

Two final points should be noted here. First, there Is the possibility

that the projection network will result In a Infinite series of look up Instructions

for certain coordinates (eg. when two documents share Information mutually

between themselves). When this happens, there is no true master and the

appearance of these coordinates Is undefined just as you would expect them

to be.

* CAE I UCULAIT3

-, CUAW TS DOUMN 40U~T U

- HMVE AN UNDEFND APPEARANCE.

FIG. 111-6 -- Undefined Appearance.

The second point to be made Is that It is possible to change the

size or shape of the shared information by having the projection cause scaling

or skewing of the Information.

SC~D

ORORKM

U .~-- orSCALE u(4.2)

FIG.1117 Sclin orSkewing.

We can now summarize the information sharing aspects of the filing

system. A piece of Information which is shared among documents actually

only exists in one place. called the master. All other documents which share

this Information (slaves) have only a reference back to the master document.

This reference Is In the form of a projection which defines the relationship

between the master area and the slave area. The relationship may be a

straightforward sharing of the unadulterated information or may Include some

* complex scaling to change the size, shape. and appearance of the Information

for the slave. Moreover, the relationship of the master and the slave (by-

~. way of the projection) may even Involve the selective but consistent

* modification of the content of the shared Information by placing filters on

the projection. Obviously, any change to a master area results In an

equivalent change to all of its slave areas.

*Basic to a windowed display system Is the capability to position parts

*of various documents In any arrangement on the screen. However, this Is

just another form of the problem of infomation sharing between documents

and Is solved with the -same mechanism -- a projection. The slave area

of this projection will always be the screen, while the master area will be

in the filing cabinet. Of course, the viewing system can display only that

* which the filing system has stored.

Because this model is the basis for a family of filing/viewing systems.

the emphasis will be on generality above other considerations; consequently,

almost all design decisions will be postponed to later levels of specification.

For example. one member of this family of systems might produce documents
entirely from projections of basic, character documents (le. letters, numerals.

etc.) onto blank pieces of paper; while other members might allow characters

to actually be typed onto the pieces of paper. As a further example. one

member of the family may require what Is seen on the screen to come from
a single *vlewingo document In the filing system. while some others may allow

the screen to have the selection of all documents with which to share

Information.

111.3 Specification.

FILER 1
41E

Basis:
Forward: FILING CABINET1.1 /PROJSET1.2 IDISPLAY1.3

Comments:

This specification represents a windowed, Information sharing visible

filing system.

(The FILER specification Is adjourned so that the FILER components:

FILING CABINET, PROJSET. and DISPLAY, can be specified. This brief

Introduction to FILER Indicates the hierarchical nature of this module

specification.)

-,-,-.-. .-.-

FLUNG CABINET1.1

Comments:
The FILING CABINET models the set of user documents which contain

all the information stored and displayed in the system. Each document is

separate and distinguishable from all other documents and Is allowed Its own

color of paper.

Audliary Deffnitions:

a. speck is ABSTRACT

b. coordinate is ABSTRACT

In the interest of generality, the two basic concepts speck and

coordinate are left only informally defined: a coordinate Is a point In space

at which a speck Is visible. For example, on the surface of a flat screen.

a coordinate could be defined by a pair of real numbers x and y. where

x measures the distance from the top of the screen and y measures the

distance from the left edge. On a simple screen, the speck may be just

one of the two values black or white. On a color screen, it may be a triple

of real numbers (r,gv) Indicating the Intensity of the colors red, green, and

violet. On a document containing only text, a coordinate might be a pair

of Integers .c) giving a line number and column number. and a speck might

be one of a limited range of characters that could appear in any line and

column of the document.

c. surface a coordinate -. speck

A surface Is defined by giving the speck which appears at each

coordinate of the surface. The domain of the function gives the extent of

i mm m mmma.mma m mlmmmaumm m m , mm, mmmm mm m wd

-. '.

the surface. For example. the surface of a CRT screen may extend ov3r all

x and y coordinates in the range -1 to 1. and at each of these points, the

Illumination Is defined by the corresponding speck. A pictorial document Is

likely to have a very large domain since specks at many different points will

be required to define even a simple figure. On the other hand, a textual

document, which could be defined as a mapping from coordinates to the

letters which occupy each row and column, will likely have a smaller, simpler

domain. Any surface defined In the state space could have an Infinite domain.

d. docname is ABSTRACT

Again in the Interest of generality, the set of names used for the

documents In the filing cabinet is left undefined. The only requirement Is

that document names be unique.

State Component Definition:

FILING CABINET1.1

documents : docname -* surface

colors : docname -+ speck

filecolor speck

dom (documents) -dom (colors)

This formal definition says that the FILING CABINET consists of

of surfaces (informally called documents) each of which can be accessed

by Its unique name. These documents each have a specific color of paper

on which the information is presented. Finally, the part of the filing cabinet

not filled with documents has a color of Its own.

The selection of documents which exist in the filing cabinet Is:

dom (documents).

The extent (size and shape) of a document listed In the selection of documents

which has the name dn Is:

dom (documents (dn)),

E' F-Ai32 569 FORMAL TECHNIQUES IN THE MANAGEMENT OF SOFTWARE DESIGN 2/4
(U) AIR FORCE INST OF TECH WRIGHT PATTERSON APRB OH
W4 E RICHARDSON 17 JUN 33 RFIT/CI NR-83-280

UNCLASSIFIED F/O 91 2 L

smmhmmhhhhhhl
Eo!mhhhhhhihh1hh1 muon

.U.

'a,,

11111. laII'--22

11111 8
1.25t 111.41= -

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

i'

while the content of that document Is:

ran (documents (dn)).

The appearance at a coordinate c on this document dn Is:

documents (dn) (c).

(Later we will define the appearance of any coordinate outside the extent

of document dn but on the document's colored paper to be determined by

colors(dn) For a document name which Is not In the Index of documents

and hence not in the filing cabinet (dn i dom (documents)). the

appearance of any coordinate will be the filing cabinet color, f ilecolor.

Operations:

The following operations on the FILING CABINET allow the addition or

deletion of a document or the changing of a background color. These

operations have been kept abstract by not specifying, for example. how the

new document Is actually created.

a.

ADD-DOCUMENT

6FILING CABINETl.1

dn docname

sf surface

- sp speck

dn j dom (documents)

documents' - documents U (dn I--4)

colors' -colors U (dn I- sp)

filecolor' - ftilecolor

Given a new document. Its unique name, and the color of paper on

which It is to appear. the filing cabinet Is updated with this new Information

by ADD-DOCUMENT.

. . -. . .,

b.

DELETE-DOCUMENT

&FILING CABINETl.l

dn docname

documents' = documents \ {dn)

colors' -colors \ (dn)

filecolor' - filecolor

Any document and its associated paper color can be deleted from

the filing cabinet by supplying the name of the document to be deleted.

c.

COLOR-CHANGE

AFILING CABINETI..

dn : docname

f speck -. speck

dn e dom (colors)
documents' - documents

colors' - colors O (dn I f (colors (dn)))

filecolor' - filecolor

Any existent paper color can be changed by the application of a

changing function (filter) to it. Of course, the name of the document whose

paper color Is to be changed must be supplied to this operation along with

the filter.

°.4

-,,

.4 d.

F ILECOLOR-CHANG

AFILING CABINET1.l

f speck -. speck

documents' -documents

colors' -colors

4 filecolor' -f (filecolor)

The file background color can also be changed with a filter function.

ho.

V 'j. J, W.-

PROJSET1.2

• --°

Basis:

Prior: FILING CABINET1.1 (Auxiliary definitions)

Comments:

The PROSET models the interactions or sharing of information

between documents in the F TILING CABINET. The sharing is done by

projecting one area (the master) onto another (the slave). The order of the

projections is significant because It Is used to determine the result where

several masters have projected Into the same slave area (projection overlap).

Projections can scale or skew Information so that the size. shape. or

appearance of a document part can be changed as It is being shared. The

information being projected can also be filtered. The filtration Is done on

the slave end of the projection and changes the content of the area being

projected.

Projections will also be used to share Information between the filing

cabinet and the screen. thereby providing the capability to define a windowed

display system.

*Notice that projections are defined in what at first glance may seem

to be a backward fashion (from slave to master). The reason for this form

of projection specification becomes clear when you realize that the Important

requirement will be to determine the speck which appears at a given

coordinate. It will seldom be necessary to ask at which coordinate a speck

will appear.

Auxiliary Definitions:

a. filter a speck - speck

The filter is used to change the specks on a surface (eg. exchanging
"0"-",

.4

red and green. or changing characters to reverse video.) Notice that the

filter Is a total function on speck.

b.

COO n

dn docname

coord coordinate

"0 This definition allows the document name to be used as a component

of the coordinate In an expanded coordinate system. That Is, any COO-

specifies a coordinate on a particular document In the filing cabinet.

c. projection a COOD -, COORD

A projection is used to map or project each coordinate of a slave

surface area onto some master surface area. Consequently, It gives the look

*' up Instructions for references where Information Is being shared between

documents. For example, If P Is a projection. then P(c) Is the master

coordinate whose appearance Is given to slave coordinate c.

With this powerful device, a document can be made to share

Information with any document in the filing cabinet. It Is also the

projection which allows us to display the filing cabinet information on the

screen In any arrangement that we desire.

slave projection-e P (COORD)

- slave * dom

master projection -. P (COORD)

master r an

The projection also defines the scaling or distortion between the

master and the slave. No restriction Is given on the size and shape of either

the master or the slave. Notice that several different documents can be

mapped using a single projection.

"'"..

d. filter-apply a COORD -o* filter

A f ilter-apply will exist for the slave of each projection. It determines

which filter Is to be applied to change the appearance of Information being

shared between documents. Every coordinate In the slave of a projection

*will appear to contain the speck derived from application of both the

projection and the appropriate f ilter. Of course, one possible filter

13 the Identity function. J (speck), which has no effect on the projected

appearance.

SLAVE AREA

MATER AREA

X. SLAVE AftEA

AREA

FIG. 111-8 - Projections and Filters.

State Component Definition:

PROJSETI.2

projlist :SEQ~projection]

filterlist :SEQ~filter-applyj

4 dom (projit) -dom (filterlist)

(Vx :dorn (projlist))
JV1(dom (projlist(x)) -dom (filterlist(x)))

94

PROJSET contains a list of projections and a list of

tilter-applys. For any projection number n in projlist,

filterlist(n) Is the appropriate filter-apply function.

Notice that the second predicate suggests that the appropriate filter

Is to be applied to the slave of the projection. Again, the reason is that

It will be Important to know what speck (or filtered speck) appears at

each coordinate point.

A question to be answered now Is how overlapping projection slaves

will be resolved. The simplest solution requires a function which will flatten
the list of projections Into a single projection. Of course, since

projection is a function, there is no ambiguity with a single projection. 77.

The standard function we will use to do the required flattening is called
.

update:

update (v) -v (1) S v (2) * ... v (length(v))

where the overriding operator 0" means:

rl O r2 - rl \ dom(r2) U r2 (rl and r2 are relations)

Therefore. using update the later projections in the list will override earlier

projections in the case of overlap. The order of the projections in the

projlist can have a significant effect on the appearance of the documents

in the filing cabinet or as seen on the screen. From the definition of

add-projection below it Is obvious that newly added projections take

precedence over the other projections.

The updated projection list gives us a single projection so

slave overlap Is no longer a problem, but we still face the question of how

to traverse the projection network so that we can find the ultimate master
for any Input coordinate. This is also easily resolved with one of our standard

tools, In this case loop. Loop has the following properties:

loop(R) - (R*) / dom(R)

(I(dom(R)) U R); loop(R) - loop(R)

Therefore, loop will apply the flattened projection as many times as required

to find the ultimate master of a projected coordinate. A caution must be

,_ven here: loonDuDdate(Dzo'list) I mav not be defined for all

coordinates in the slave of the various projections in projlist. The

reason for the undefined ultimate master In these undefined cases is circular

projection paths in the flattened projlist. This is the same problem posed

by placing two or more mirrors in such a manner that they mutually

reflect--certain points seen on one mirror may never be traceable through

all the reflections to their source (ultimate master).

Operations:

The following operations on the PROJSET cause the addition, deletion, or

swapping of documents or the changing of a filter. Like the operations on

the FILING CABINET. these operations have been kept very general.

a.

ADD-PROJECT ION

APROJSETI.2

p : projection

fa filter-apply

dom (p)- dom (fa)

projlist' - projlist * (p>

filterlist' - filterlist < (fa>

A projection (and its associated filter-apply) is added to the

end of the appropriate list if the domain of the new filter-apply Is the

slave of the new projection.

b.

DELETE-PROJECT I ON

APROJSET1. 2

m 4 length (projlist)

projlist' - delete (projlist,m)

filterlist' -delete (filterlist,m)
S,..

Any existing projection and Its f ilter-apply can be deleted
* ~1 by specifying the number of the projection to be removed.

C.

SWAP-PROJECTIO

APROJSET1.2

n a 1

n 4 length (projlist)

m 4 length (projit)

proJlistl

projiat S (n I-* projit (in)) S (m - projlist (n))

filterlist'

filterlist S (n F-* filterlist (in)) S

Swapping two projections reverses their order In the list and

- likewise moves the two associated f ilter-applys. Since the order of

projections in the proj list is very important In determining the

appearance of a document, the ability to swap two projections Is required.

d.

SWITCH-F ILTER

APROJSET1. 2

n IV

Lf filter
C *P(COORD))

n 4 length (filterlist)

projlist' - proilist

filterlist' - filterlist S

(n I-* f ilterlist (n) S (f o filterlist (n)) P C)

This operation allows the filter for part of the projection slave to be

changed. Note that the change Is by composition rather than repiacement.

DISPLAY 1.3

Basis:

Prior. FILING CABINET1.1 (Auxiliary definitions)

Comments.

DISPLAY specifies what coordinates of which documents wiii be

displayed on the screen.

State Component Definition:

DISPLAYl. 3

seearea P(COORD)

DISPLAY Is the set of coordinates whose appearance the user wishes

to see displayed on the terminal screen.

FILERI

(The FILER specification, which was adjourned to allow the substate

components to be defined, can now be restarted.)

Auxiliary Definitions:

a.

background X -- COORD - X

background *(x)

.c)

This constant function spreads the background value (eg. color) to

all coordinates.

State Definition:

FILERI

4 FILING CABINET1.1

PROJSET1.2

DISPLAY1.3

The FILER, then. models the complete filling/viewing system by1 =%

combining the three components. FILING CABINET and PROJSET specify

a very abstract Information sharing filing system. All three components will

be used to specifly a simple abstract windowed display system.

Observations:

Now it is possible to determine the appearance of the Information

in the filing cabinet and on the user's screen. This Is done by creating

the following functions to Integrate the FILER components.

4..4...l

a.

F ILE-APPEARANCR

FILING CABINETl.1

view' COORD -. speck

(VC : COORD I dn (C) E dom (documents))

(view' (C) - (background (colors (dn (C))) I

uncurry (documents)) (C))

This function places the documents on their background paper colors.

Given a FILING CABINET, any coordinate on any existing document will

determine a speck. Any coordinate which is not in the extent of the document

(ie. not in the domain of the document) will appear as the appropriate

background speck.

Remember.

documents n docname - (coordinate - speck)

and

uncurry (documents) l (docname x coordinate) - speck

- COORD - speck

b.

PROJECTED-APPEARANCE

view COORD -* speck
prjview' COORD - speck

prjview' - (background (filecolor) 0 view)

o loop (update (projlist))

*774

This function adds the shared information look up Instructions defined
by the projections to the documents. The projection list flattened by

update will be applied repeatedly by loop until a document coordinate

outside the domain of the flattened projection list Is produced. (If the loop

does not terminate, the result Is undefined.) This coordinate will use the

document appearance of the previous function to determine its speck If the

. coordinate is on an existing document or Its paper. if the coordinate is not
• .1

. '

on one of the papers In the filing cabinet, then it will contain the filing cabinet

background color.

* C.

APPEARANCE

*O FI LER1

'., prjview COORD -+ speck

fileview' COORD - speck

fileview' (C) = ((background (I(speck)) S

update (filterlist)) (C)) o

prjview (C)

Finally, this function determines the appearance of the entire filing

cabinet. It applies the appropriate filter to each speck produced by

the PROJECTED-APPEARANCE. If the given coordinate Is not an element 7-

of a projection domain, then the coordinate will likewise not be a element

of a filter-apply. In this case, the Identity function, 1(speck) will
leave the speck unchanged. (Remember that the Identity function. I(COORD)

Is built Into loop.)

" d.

D I SPLAY-APPEARANCR

OF ILER1

fileview COORD - speck

picture' COOED -*speck

picture' - fileview P seearea

This last observation allows us to restrict our view of the filing cabinet

to those areas which are of interest to the user. We now have the ability

to formally specify the picture that the user will see displayed on his screen:

DISPLAYED a FILE-APPEARANCE; PROJECTED-APPEARANCE;

APPEARANCE; DISPLAY-APPEARANCE

We should again note that this is a partial function since no attempt

has been made to restrict circular projection networks from the PROJSET.

Operations:

The operations defined below will not be presented as FILER to

FILER functions. The reason for this is quite simply to delay unnecessary

promotion (and. hence, complication of simple functions) and to put off

premature design decisions. For the same reason. the operations previously

defined on the various components of the state will not all be promoted to

state to state functions.

The projection concept is a very powerful one. We shall now use

projections as a convenient means of changing parts of the state in addition

to their previous use as a state component in the PROJSET. The projections

used to change parts of the abstract machine state we will refer to as updating

projections to Indicate that they do not (necessarily) coincide with the state

component projections. We can now make state changes by composing part

of the state with an updating projection. The advantage of composition

changes rather than outright replacement of state components is that it makes

reversing (le. undoing the effects of) the operation possible. The following

table summarizes the operations which can be developed from state

components and updating projections:

1. move:

a projection (frame, Image, or both)

an area of filter application

a document (part)

an area seen on the screen

2. change the size/shape of:

a projection

an area of filter application

a document (part)

an area seen on the screen

change-master projection x projection -~projection

change-slave (up,p) a p e up

change-master (up,p) a up o p

*change-projection~ projection xprojection -. projection

change-projection a kup,p I up e partial-injec'-ion)

IU up op UP

This will allow the slave and/or master of a projection In PROJSET

to be moved, changed In size or shape. scaled or skewed.

ar.ASLV
MMM ATN

MO.O5FOJW

SLV SAE LV

DOLA4TDCMc.J D=CMN
FFNTO POETO

C.
MATE ASE

* O4AtdO-SLWE O4NOE-MA5PROJECTIONRJECIO

FIG. I11-9 - Projection Changing.

b.

change-f ilter-area :filter-apply xprojection -

* filter-apply

change-filter-area a op(o)

* We can change the area of application of the filter(s) associated with

a projection.

C.

change-document (docname -*surface) -~projection 4

(docname -+* surface)

change-document a(XS)

(XC COOED Idn(C) e dom (S))

(XD COOED Idn(D) e dom (S))

S 0

(dnCM I.-* (S(dn(C)) S (S(dn(D)) *(coord(C) -

coord(D)))))

This function allows the projection (movement) of a document (part)

and can thereby change the size or shape of the slave document. It does

- * not affect the master document area or allow the creation of a new document.

d.

change-display projection xP(COORD) -~P(COORD)

change-display *(kP,s)
P 08D

This changes the document areas displayed on the screen.

FILER2

,-,_

Basis:
Prior: FILERI

Comments:
This specification restricts the abstract coordinate system of F ILERI

to a two dimensional Cartesian system. This restriction recognizes the obvious

choice of coordinate systems for our (textual) documents since a document

is normally a flat. two dimensional object and since the mathematical basis
of a Cartesian space is widely understood.

Requirements / Design Decisions:

U1 The coordinate system Is two dimensional.

- Auxiliary Definitions:

Add the following to the current theory:

PAIR '

X :Z"'

.. y . z

+ Z

*~ a A,

B,

C' PAIR

Z S JNT v Z S real

x (C,) x (A) + x (B)

y (C') y (A) + y (B)

! 4,::

Furthermore. - and " are similar to +.

z

A, ""-

B,

PAIR

Z cINTv ZG real

SC'- x (A) < x (B) v (x (A). x (B) A y (A) < y (B))

The other lexicographic relational operators are similar.

The overloading of operators should not cause confusion since the

context will easily determine which operator is intented.

b. coordinate a PAIR [real] lii1

Here we have defined our previously abstract notion of coordinate.

-- 7

State Definition:

FILER2 [speck, docname] a

FILER1 [coordinate - PAIR [real], speck, docname]

We have restricted the state space to use a coordinate plane which

Is two dimensional.

FILER3

Basis:

Prior: FILER2

Forward: PROJSET2.2 / DISPLAY2.3

Comments:

This Is the first step in limiting the very abstract family of systems.

This level will Introduce various design decisions which are large in scope

and effect. The most significant of these decisions is the definition of the

coordinate system for the documents and the screen as two dimensional,

rectangular, and integer. With this decision, it was also concluded that

scaling and skewing of information Is not required in this system.

Other decisions limit the power of projections by 1) requiring that

the slave and master of any projection each be confined to a single document

paper. and 2) limiting the allowable filters to one per projection in addition

to the identity filter. Finally, the display is to show only a single document

selected from the filing cabinet.

These decisions were taken because they typify a certain class of

systems: those which deal mainly with textual documents, not requiring high

flexibility of document design in shape and appearance. Of course, a large -

number of systems still fit into the family defined by this level of specification.

L. -.A

a . . . -

PROJSET3.2

Basis:
Prior: PROJSET1.2

Comments:

This specification simplifies the projections by requiring that slave and

master of a projection must define areas on single documents. This in no

way diminishes the power of the set of projections but does restrict the power

of each Individual projection. The second restriction presented here will allow

only a single area of each projection to be modified by a filter. Again. this

does not reduce the power of the whole projection set but does simplify

Individual projections.

Requirements I Design Decisions:

[1] The slave and master of a projection must each be an area on a single

document.

121 Each filter-apply can use only one filter besides the identity.

State Component DefniUon:

PROJSET3.2

PROJSET1.2

,II (Vx dom (projit)) (3a,b : docname) .

(dom (projlist (x)) (COORD I dn - a) A

ran (projlist (x)) £ (COORD I dn - b))

[2] (Vx : dom (projlist)) (3f : filter)

(ran (filterlist (x)) ((f) U I(speck))

The appropriate restrictions are added to the component state space

definition.
°a'

DISPLAY3.3

Basis:

Prior: DISPLAY1.3

Comments:

Our current design gives us the option of seeing parts of a variety

of different documents or of selecting a single document to view at any

particular time. Of course. in the latter case the selected document could

be a complex mosaic of parts of the other documents.

We will choose this latter display technique because it simplifies the

definition of the relationship between what the user wishes to see (seearea)

and the form of that area presented on the screen. That is. with this

definition, the screen Is simply an area from one of the documents In the

filing cabinet.

Requirements I Design Decisions:

(11 The screen displays part of a single document at one time.

State Component Definition:

'4.%

'=4-

DISPLAY3.3

DISPLAY1.3

. [1 (Px docname)

din OseeareaD- x}

-.4•

4. .

=-*4'
.%

FFILER3

Th 1eiito of Thetye coordinatefae Istodmninl rerctngutarpands ofIntegers

Sttdefinition:

CHAPTER IV

The Abstract Baseline

This case study applies the techniques of the proposed software

development methodology In a limited and controlled demonstration. The case

study project is a moderately sized, single person development which assumes

the existence of a typically naive client. Since this study represents the first

test of a potentially complex methodology, It is appropriate that the degrees

of freedom of the project be limited by virtually eliminating the interactions

(with clients, management, design team members, implementors, etc.) that

would exist in a practical development. In actuality, the portions of the

methodology skipped by this Initial controlled project (eg. configuration

management, resource management and estimation, verification and validation.

etc.) are generally aspects which are Imported from other design strategies

and. hence, are not unique to this methodology. The case study does

emphasize the aspects which uniquely form the kernel of the methodology:

eg. the structuring of the formal specification, the use of baselines within

the formal specification, documentation of the limitative design technique, the

use of very abstract starting points, etc.

It Is Important to remember, however, that the methodology was
designed for large. multi-person software projects. Therefore, results of this

scaled down case study must ultimately be extrapolated to the large

development where communication among participants and management
control are of the highest priority for an efficient project. It is only at this

large scale and over a full life cycle (the case study does not attempt to

simulate product testing, handover. operation, or maintenance) that the true

cost reduction benefit of this methodology can be determined.

This chapter contains a portion of the abstract baseline

documentation. This documentation Includes the informal requirements

Zw~~~~- IF°TN----1

" S'

definition, the problem decomposition, the formal abstract design specification I
(references), and the provisional user's manual.

IV.1 Requirements Definition.

The object of this case study is an information sharing, windowed

screen editor for a personal computer system. The requirements of the

* desired system are given Informally and only very generally by the following

guidelines:

(1) Only those parts of the textual Information that are currently

, visible can be updated. All the effects of each update are

immediately visible, and can be Immediately undone.

(2) All textual Information In the system can be brought Into view

and updated by uniform methods. There are no specialized

techniques necessary for manipulating file names, directories,
4.'.

dates. version numbers, etc. All these are documentary information.

accessible and updatable in the same way.

(3) The editing commands should be simple, low risk commands

which do not rely on a hierarchy of modes.

(4) All user interfaces to the system should be consistent and

designed to reinforce the user's confidence In and understanding

* of the system.

it is assumed that no firm Information is available about the hardware

to be selected for the customer's system until such a selection Is required

for further progress. However, from the nature of the case study system

It is (reasonably) presupposed that the hardware would include a screen with

limited or no graphical capabilities, and whose character set could be stored

encoded In the memory of the computer.

...

IV.2 Decomposition.

The first decision macge in the development of the windowed screen

editor sv tern was to separate the filing/viewing functions of the system from

the editing and the user command Interface functions. This decision

represents a logical decomposition of a system which could be difficult to

reason about effectively if taken as a whole.

The fIling/viewng system will Include both the Information sharing and

the windowing aspects of the &.ystem. All decisions about how Information

Is stored and ropresented to the user will be made In this component. This

will comprise the basis of the system.

The second component, the editor, will deal with the design of a

system to update textual documents within the filing system created in the

first component. A subset of the normal editing functions will be available

to the user in the ultimate system design.

The standard components of the machine, the user, and the system

Interfaces will be recomposed with the two explicitly decomposed modules

as required to complete the system.

LDISPAY

---- ---------------------- . .----------~-----------..~PRV AEN

HOZONTALLY
.N.'-

DICK)OOSED

T -- - - -DETAILED BASELINE

--
9 ."

...a. .u. ,s u

IV.3 Abstract Design.9

The first component of the design has been formulated very abstractly

.4, and Is presented as Chapter Ill, A Family of Visible Filing Systems.

The second component of the abstract design is drawn from previous

work on the formal definition of an editor. [Suf rin.81 b) That abstract editor

'- /

design has been slightly modified and presented In the style of this
methodology In the Specification Library (Appendix A). A good explanation

of our editor design appears In SufrIn.81b] and. therefore, will not be repeated

here.

."-

41,

Th.e on o p ne to te a sra td sgni ra nfo peiu....-

IV.4 Provisional User's Manual

SCREENWRITER

USER'S MANUAL

Contents

1. In the beginning...

2. Seeing Is believing...

3. Like a bridge over troubled waters..

4. Deja vu...

5. To -err Is human...

6. And to all a good night...

1. In the Beginning...

The terminal screen you are using Is Screenwriter's way of

communicating with you. It will hold 24 lines of Information: each line
containing as many as 80 characters. The very bottom line Is special because

Screenwriter will use It to ask you questions, make comments, or indicate

when you have done something wrong. Whenever something appears on this

line. the bell will ring to draw your attention to it.

The keyboard attached to the screen is your device for communicating

commands and answers to Screenwriter. The keyboard Is divided into three

parts: the character keys, the special command keys. and the directional keys

(see fig. 1). The character keys are in the same arrangement as you would

find on a typewriter. The special command keys are arranged in three rows

and five different areas. The three rows from bottom to top represent

increasingly dangerous. commands, and some care must be taken In using

the top row of commands. In order to cause you to think about your use

of these uppermost commands and to prevent an accident, the auxiliary key
must be depressed simultaneously with any other key in the top row for the

command to be communicated to Screenwriter. The lower two rows of special

command keys require only a single key depression for each command. The

five areas of special command keys will be discussed in the order they appear

on the keyboard. When a key (command) Is discussed below, it will be

underlined for emphasis.

DOCUMENTS WNOWS GLSTA PRJING MISCELLANEOGLASS I~qOJ.C1IONS •"

0 0 0 0 0 0 OQ

I..!

0 0 00 0 0 0 000 0
midA M' U CKT mmCiAIN C AMM CMNPPW

[] r]

IG 0 0 * U 0 T K

STANDARD 0 0
CHARACTER U
KEYBOARD 0

90 0c

FIG. UM-1 -- The Keyboard

When you call Screenwriter Into action It will welcome you with a

message on the last line of the screen. The very first time you use It. the

upper 23 lines of the screen will be empty to show you that your new office

Is empty. ready for you to go to work. In subsequent uses, you may start

with a picture telling what Information had previously been stored with

Screenwriter. This picture Is called the home picture because you will return

to it regularly.

The Paper.

For you to create a document Ceg. letter, memo, report. etc.). the

~s. first thing you will require Is a blank sheet of paper. The beginning of this

blank sheet Is easily obtained by depressing the create document key. The

paper will be given to you one line at a time exactly as Is done on a

typewriter. Each line will hold up to 80 characters of typed Information. so

your sheet of paper will be exactly as wide as the screen. The bright flashing

line on the screen Is called the cursor and Is used to point to the current
location on your paper. After the create document key Is pushed, the cursor

will be In the upper left hand corner of the screen and will point to the

first position on your new one line sheet of paper. This first line Is called

the name line because it Is here that you will type any Identifying Information

about the document you are creating (eg. name. titie. draft or final, date.

etc.).

The Type.

To put this name Information on the first line or to add Information

to any future line is exactly the same as for a conventional typewriter; simply

type the characters that you wish to appear on the page. After each character
* . that you type the cursor will move to the next position on the line. However.

the cursor wili stop at the end of a line and refuse to go any further, just

as your typewriter would not let you beyond your margin. Also like your

(electric) typewriter Is the manner In which you move to the next line on

the paper -- depress the return key. As you would expect, the return key

will cause the cursor to move to the beginning of a new blank line, ready

for typing. Of course. a completely blank line In your document (eg. double

spacing) Is the result of two returns in a row.

..

-°

The Arrows.

At some point in the creation of your document. you are likely to

make a "typoo, but don't despairl The correction of errors is one of the

advantages of Screenwriter over your conventional typewriter. To fix an error

in some part of your document, simply use the arrow keys to move the cursor

to the location of the error and retype on top of the erroneous part. The

new character you type will replace the original character that was there (no

erasing Is required). The arrow keys allow you to roam around your document

making changes as you desire. However, the arrow keys will not push the

cursor off the document you are currently creating.

The Insert and Delete Keys.

Two other types of easy corrections are possible with Screenwriter.

The delete command will, cause the character which is pointed to by the cursor

to disappear and the rest of the line will be joined back together as if the
deleted character had never been typed. Deleting a blank character after

the end of a line will cause the line up to that point and the following line

to be joined into a single line (unless doing so would make the resulting

line longer than allowed by the margins.) One character Is deleted each

time the delete key is pushed.

Inserting, as you might expect. does the exact opposite of the delete

command. The Insert command will switch the machine to the insert mode.

thereby causing characters to be inserted before the character denoted by

the cursor. Inserting a return In a line will cause the remainder of the line

to the right of the new carriage return to be moved to a new line. The

word "INSERTING" will appear on the last line of your screen to remind you

.' that any character you type will be Inserted rather than replace an existing

* character. Hence, many characters can be inserted with one push of the

insert key. Screenwriter will know the insert command Is over when you

depress any key other than a character key. (If you will notice, there Is

an on the Insert key on your keyboard. This corresponds to the

on the accept key. The accept key is a very safe key and can be used

at any time without fear. It will safely end any "*'ed" command which has

been started, but will do nothing else.)

- wr - .-.,V W .. r.

.. 1

APPEARANCE INPUT

now is a time

now Is time

now is t time

nt

now is thetime

* now is the time

FIG. UM-2 -- Insert and Delete

The Pages.

With standard typewritten documents you are used to the paper being

a constant length (say A4) and any document of a greater length requiring

more than one page. Screenwriter has a variable size for the length of the

piece of paper you write on -- as we noted earlier the paper will grow one

line at a time so that It Is always just long enough to hold your document.

A screen page of this document you create will be any 23 consecutive lines

that are seen on your terminal screen. (Remember, the 24th line is used

for Screenwriter to talk to you.) As you add more than 23 lines to your

document, you will notice that lines disappear off the top of the screen as

new ones are added to the bottom. This vertical shifting of the Information

visible on the screen is known as scrolling.

Scrolling Is rather like what happens when you view a film strip with

a projector. The film strip (document) can be almost any length but you

will be able to see only one part of it (screen page) at a time. The projector

scrolls forward to move to the next part or scrolls back to reveal the previous

part. All parts but the one being projected are hidden from view on one

of the two film reels. Similarly, all parts of your document will be hidden

except the part which has been scrolled onto your terminal screen.

Scrolling to correct your document Is accomplished one line at a

time by using the up arrow for scrolling up the document. or the down arrow

for scrolling down the document. When the cursor reaches the bottom (top)

of the screen page, further use of the down (up) arrow will cause the

Information visible on the screen to shift up (down) one line and the next

(previous) line to appear on the bottom (top) of the screen page.

If your document Is very long. It may be inconvenient to scroll through

It one line at a time In search for a particular line or word. Therefore.

It Is possible to scroll through your document a full page (23 lines) at a

time using the pge up or page down command. The page down command.

for example, will cause the line previously just off the bottom of the screen

page to be moved to the top of the new screen page. Additionally, the

beginning or end of a document can be scrolled Into view with the top or

bottom command.

The Printed Copy.

Once a document has been created and corrected, you will probably

want a printed copy of It to send out. give to your boss. etc. Getting a

printed copy Is as easy as giving the print command. If the cursor Is in

the document's name line when this key is pushed, then the entire document

Is printed. If the cursor is anywhere else in the document at the moment

print Is pressed. then only the current screen page Is printed. When

Screenwriter Is finished printing. it will tell you so on the last line of your

screen.

The Filing Cabinet.

If the document you have created Is something that you wish to save

for reference, or further work, then place it in Screenwriter's filing cabinet.

Filing a document is done very simply with the file command key. This

command files away the document exactly as you currently have it.

The Waste Bin.

If the document you have created Is something that you wish to throw

away because you have no further use for It. then place It In Screenwriter's

waste bin. Warning: throwing a document away Is permanent since

Screenwriter will not retrieve from the waste bin. Therefore. the process to

get rid of a document Is slightly more Involved than the process to file a

document. First, you must press the throw away key which will cause

Screenwriter to ask the question: "DO YOU REALLY WISH TO LOSE THIS -

DOCUMENT?" If you give any answer to this question except "Y*. then the

answer and the throw away command will be ignored. The extra difficulty of

this command will give you time to consider your decision to throw away

a document you have created and to further protect you from accidental

destruction of a document. Completion of the throw away command (i.e. an

answer of 'Y to the question) will cause the document to disappear and

the screen to return to the home picture.

2. Seeing Is Believing...

Any number of documents can be created. corrected. printed, fliled.

or thrown away In the manner described In the preceding chapter. However.

* these commands do not fully allow you to utilize the flexibility and power of

Screenwriter. To tap this power you must understand how to change the

picture you see on the screen to suit your requirements. Thus far, you have

been able to see one of two pictures on the screen. The first possibility

called the home picture; was seen Immediately upon setting Screenwriter Into

action or as a result of throwing away a document you've just created. The

home picture (which will be explained more fully In a moment) Is a very

Important view of Screenwriter and Is probably the starting place for most

of the work you will do. The second picture you have been able to see on

your screen Is one which Included part of the single document you were
working on at the time. This picture was visible between the create command

and the file or throw away command. Remember that while working on a

document. Screenwriter would not let you see anything on your screen except

that document. Now It Is time that you controlled what Is visible on your

screen.

The Projections.

Imagine for a moment a big white tabletop upon which Screenwriter

could display any of the documents you have filied In Its filing cabinet, It

could do this with one of the projection systems shown below (fig. 3). The

camera focuses on the document (or part of it) and that Information seen

*by the camera Is projected onto the tabletop. Certainly If you were given

enough of these projection systems. you could lay the documents In the filing

cabinet on the tabletop In any arrangement you desired. and that is exactly

what you will do.

:,'I

..- 9

.. 1

W.~ V. V..W;

.~~~~~.

FIG. UM-3 -- A Projection System

Your first comment at this point might be: "1 have imagined a very

large tabletop but all I see Is 23 eighty character Ilnesl" And right you are.

The size of your terminal screen limits you to seeing only 23 consecutive

lines of the tabletop, but you can control which lines you see by a technique

you have already discovered -- scrolling. Remember the arrows, page Mp .

and page down? What those keys actually did was change the area of the

tabletop visible on your screen. If you look again at the arrow keys. you

will note that there are also two horizontal arrows which allow you to adjust

left or right to any 80 character segment of tabletop. Of course. the tabletop

*.S- 7

has edges, and you would not expect to be able to see beyond the edge

of the tabletop. For simplicity, let's call the area of the tabletop that Is

visible on the screen the picture area. As you recall, the picture area when

you were creating a new document was called the screen page.

Having resolved that problem you might wonder: 'How do I remember

and find all of the documents I have created and filed away?" To answer

that we return to explain the home picture. Starting in the upper left hand

corner of the (rectangular) tabletop you have just Imagined. begin to project

the name lines of all the documents you created and filed in Screenwriter.

Project them onto the tabletop In the order they were created, each below

the previous one. Having arranged the name lines of all documents in this

manner, insert a bar underneath each name line to represent the number

of lines In that document (le. the longer the bar the longer the document).

What you just Imagined- Is the home picture. No matter what part of the

tabletop Is visible on the screen, It is simple to return to the home picture

-- simply push the home key. While you have the home picture on your

screen the last line will display the words: "HOME -- , DOCUMENTS IN THE

FILE* (where " will be replaced with the document count).

r Rome Document

Letter to IBM Dec 17, 1982 draft

Script for Rotary Speech revised Jan 23, 1983

Contract for Consulting Services - ACR Jan 30, 1983
...

Invoice, Paper Products, Inc. Feb 19, 1983 For Dec, Jan and Feb. - -

41

:,. a.

80O4E -4 DOCUMENS IN THE FILE i,2
FIG. UM-4 - The Home Picture

Finally, you might ask: *What happens when one of the projections

overlaps another projection on my imagined tabletop; is there a double

exposure?* The answer Is "noo. The projections are of varying strengths.

so that In case of overlap only the stronger projection will be seen In the

area of overlap. The rule Is: the newer projections are stronger than the

older projections.

'o7.

PROJECTIONS WITH A
COMMON SLAVE AREA
CAUSE OVERLAYING.
RESULTANT DOCUMENT
APPEARANCE DEPENDS
ON STRENGTH (ORDER)
OF THE PROJECTIONS.

FIG. UM-5-- Overlapping Projections

The Window

Now that you have a mental picture of Screenwriter busily projecting

documents from the filing cabinet to the tabletop, it is time to explain the

keys which will cause Screenwriter to create the tabletop arrangement of

document parts you desire. Before beginning this explanation, let's remember

why It Is important to get a specific arrangement of documents on the tabletop.

Firstly, we know that the only way we can see documents we have created

and flied In the system Is to project those documents onto the tabletop and -.

scroll or adjust until that part of the tabletop Is visible on the screen.

Secondly, we will compare, combine, and change documents: therefore. we

want to position the documents on the tabletop so that the relationship among

them is appropriate to our needs.

The area of the tabletop covered by a projected document is called

by a dark line which looks like a window frame. At the top of the window

Is always the name line of the document projected into the window or as

much of it as will fit in the width of the window. (see fig. 6) The area of

a window Is defined by the cursor location on the screen at the time you

push the create window key. To position the window correctly. place the

upper left corner of the screen exactly at the tabletop spot where you want

the upper left corner of the window to be. Now, move the cursor right and

down until it is in the spot which is to be the lower right corner of the window.

Having done this, the window area is defined by the area from the top of

the screen to the line Including the cursor and from the left edge of the

screen to the column Including the cursor. In other words, the line from

the upper left corner of the screen picture to the cursor becomes the diagonal

of the new window. Note that the largest window you can define in this

manner is one the size of the screen. When the window is the size you

desire, push the create window key. This key will draw the dark line frame

around the area you have defined and clear the area Inside the frame. After

a moment. Screenwriter will take you to the home picture so that you can

pick the document you want projected to the window. The bottom line will ±0

say "CHOOSE A DOCUMENT TO PROJECT, PLEASE' to remind you of your

task.

Letter to IBM Dec
If at all possible iti
however, that does nol
tyou have included thel
IBefore we can resume
lsome reduction in thel
I Therefore, we hot
Ithere would not be apl

Consulting Services -- ACR
lered in terms of the previl
Itil January 1, 1985 or thel
Iservices the following insl
lever there is not to be a I
-'Consequently, the cost Pt
Inothing without further col

F- -.- - - - ---- .

'. "FIG. UM-6 - Windows

-004 •s •. ..- o1 . . -0

To get the proper document into the window you have created, move

the cursor to the appropriate name line. Now, move the cursor across the

length bar under the name line until it corresponds to the approximate area

of the document that you wish to see In the window. Each position 'sn the

length bar represents 10 lines In your document. After the cursor is in the

proper place in the name line, depress the choose key. This action will

return the screen (and cursor) to the area of the tabletop where your newly

defined window can be seen. In the window will be that portion of the

document you selected via the length bar.

If you wish to get an entire document from the filing cabinet and

project it to the tabletop there is another, simpler method that you may use.

The choose key will project the entire document selected by the cursor to

the area starting below the home picture If a window has not been defined

(ie. you did not depress the :reate window key Immediately prior to the choose

command.) Remember that the home key will take you to the name line

area of the tabletop anytime you wish to display an entire document in this

manner.

The Window Changes.

Now that projections to the tabletop have been created by

Screenwriter. you may find that changes in the size, placement or content

of the window would be useful. Well, it Is quite possible to make any of

those changes without difficulty. For all of these commands, first pick the

window you wish to chdnge by placing the cursor within it.

Let's see how to change the size of a window. The single rule you

must b(aware of in adjusting the size of window Is that the window can

never be larger than the document paper being projected to it. So for

example, it Is not possible to expand a window beyond 80 characters wide
since that is the maximum document paper and projection width. With this

rule in mind, push the window expand or window retract key depending on

whether you wish to Increase or decrease the size of the window. Now. use

the arrows to point In the direction you want the window frame to move.

With the window expand key the edge of the window frame on the same side

as the depressed arrow moves in the direction of the arrow; while using the

window retract key. It Is the side opposite the depressed arrow which moves

In the direction of the arrow. Figure 7 will help you visualize how to use

the arrows for these commands. The window cannot be retracted completely:
part of the window must always be visible. To indicate to Screenwriter that

you have changed the size of the window as much as you wanted, press

the accept key or any other non-arrow key. While you are changing the

size of a window, the last line of the screen will say "CHANGE WINDOW

SIZE--USE ARROWS'.

UP

DOWN

LEFT RIGHT RIGHT LEFT

WINDOW
FRAME

DOWN
EXPAND RETRACT

FIG. UM-7 -- Window Changes

Changing the location of a window is similar to changing the size.

*. The rule to remember here Is, obviously the window must remain on the area

of the tabletop. To move the window: position the cursor, depress move

window and use the arrow keys. The window will move around the tabletop

in the direction Indicated by the arrows that are depressed. To conclude

this command, push accept or any other non-arrow key. Again, Screenwriter

will remind you by putting "MOVE WINDOW--USE ARROWS" in the last line

of the screen.

Finally, the content of the window (i.e. what you see In the window)

can be easily changed. Just as you can cause Screenwriter to scroll (up

or down) and adjust (left or right) the tabletop In the screen. you also can

cause the document being projected to a window to scroll or adjust in the

window. This will have the result of changing the area of the document which

Is visible through the window. The requirement, of course, will be to keep . -

the projection camera focused on some part of the document paper; that

Is, what shows through the window must always be part of the same document. .

Once again, the cursor position at the Instant the scroll document key Is

pushed will select the window. The arrows, page y2, page down, top and

bottom will cause the projection camera to move in the direction indicated.

As before, the accept or other non-arrow key will end this command.

Screenwriter will Indicate the command he Is performing by placing the words

- __ "SCROLL OR ADJUST--USE ARROWS* on the last line on the screen.

The Projection Strength.

As noted earlier, projection strength decreases with age. That is,

newer projections will overlay (hide) older projections. There may be times

when this causes some difficulty because a more Important document gets

hidden by a document of less Importance. To correct just such a situation

there is a command which will swap the projection strengths of two projections

on the tabletop. Since the only time that projection strength is important

is when hiding occurs, that will be the only time the swap strength command

will be effective. To use the command, first move the cursor to point to

a spot where one window covers another. Now, press the swap strength

key. The result of this command Is that the window which was previously

hidden in the area of the cursor is visible and the previously visible window

Is hidden. This swapping changes the strength of both entire windows; so,

as a consequence, some other documents may partially disappear or become

visible. (See fig. 8.) (Note that if more than one document is hidden, the

swap strength command will uncover only the strongest of the hidden

documents.)

letter to IBM Dec
Ill at all possible it-
hbowever, that does hal
Iou have included thel
I3efore we can resume I
loom reduction in thel

I Therefore, Consulting Services - ACR
Ithere would notlered in terms of the previl

Itil January 1. 195 or thel'
ervices the following Inl

lever there Is not to be a I
I Consequently, the cost pI
Inothing vithout further col

f sWAP

Letter to IBM1 Dec
11f at allpossible itl
Ihowever, that does nol
lyou have included thel
I3efort we can resume I
1some reduction in thel
I Therefore, we holting Services -ACR

lthere would not be apin terms of the previt
-- anuary 1. 1905 or thel

lservices the following insl
lever there is not to be a I
I Consequently, the cost pi
Inothing without further col

FIG. UM-8 -- Swapping Projection Strength

You may at times have noticed some automatic strength swapping

or tabletop scrolling and adjustment. This Is how Screenwriter ensures that

-v . . . p.-

part of a window that you need to see to finish a command Is visible to -7.

you. This Is called disclosure and was first seen when Screenwriter

automatically scrolled up the screen page as you added more lines to the -

document you were creating. The commands move, retract, and the character

or arrow keys are those which can possibly cause disclosure.

Letter to 1IBM Dec Letter to 1BM Dec
lIf at all possible itl Itf at all possible itl
Ihowver, that does Rol Ihowever, that does nol
lyou have included thel Iyou have included the[
IBefore we can resume I Iefore we can resume I
Isome reduction in thel Isome reduction in thel
I Therefore, Consulting Services - IC | Therefore, we bolting Services ACR
Ithere would notlered in terms of the previ p Ithere would not be apin terms of the previl

-itil January 1, 1985 or thel .a-----------aWay 1, 1985 or thal
Iservices the following insl lservices the follo wing insl
lever there is not to be a I lever there is not to be a I
I Consequently, the cost pg I Consequently, the cost pi
Inothing without further col Inothing without further col

O R

Letter to IBM D Letter to IBM4 Dec
lit at all possible If at all possible iti
Ihowever, that does Ihowever, that does nol
lyou have included t lyou have included thie
laefore we can zesum Illefore we can resume
Isome reduction in t lsome reduction in thel
I Therefore. e,- I Therefore, we hol
there would not be Ithere would not be apl

Ited woI nt

FIG. UM-9-- Disclosure

The Window Removal.

Once a projected document is complete and it is no longer needed

on the screen, it can be easily deleted with the window remove key. The

window to be removed must contain the cursor at the time this key Is pressed.

The result of this action is to change the appearance of the tabletop by totally

removing the designated window. The document In the filing cabinet is not

removed.

In the first chapter we learned how to use Screenwriter to create. fi
correct, print, throw away. and file documents. In this chapter we learned

to retrieve documents which have been filed by projecting them from the filing .

cabinet to windows on the tabletop. We also now know how to change the

window size. location, and content to suit our needs. We can change the

relationship between two overlapping windows by swapping their strengths.

And finally, we can scroll the tabletop up and down or adjust it left and right

in order to display on the screen exactly that portion of the tabletop which

is currently of interest to us. With all of this flexibility now at our command.

we are prepared to learn how to change any document in the filing cabinet

that is visible in a window. (Remember, up to this point we have been able

to correct only those documents which were created but not yet filed.)

3. Uke a Bridge Over Troubled Water...

It would certainly be painful to have to start completely over on a

document If we found an error in it after filing it Initially. Sounds like the

problem of trying to correct something after removing it from the carriage

of your typewriter, doesn't it Fortunately. Screenwriter is much too flexible

to allow that sort of a problem. Much of the correction capability is not new.

but is the same capability that you had when initially creating the document ..

(i.e. when the document was still In the typewriter carriage.) That Includes

the ability to change characters, insert characters and delete characters.

In addition, some new. more powerful line insertion and deletion commands

can be included in your tool box with only a very brief further explanation

of projections.

Before we discuss these document changing commands in greater

detail, It is important that you understand the effect such commands will have

In general. Earlier, when we were creating and correcting documents, we

used a blank sheet of paper which expanded to be as long as necessary

to hold one document. Now, we realize that the sheet of paper was simply

part of the tabletop, and that corrections were being made to the tabletop

Itself. With the documents no longer part of the tabletop but Instead filed

away in the filing cabinet and only their projections visible on the tabletop.

what will the corrections actually change? The answer is quite simply that

the corrections we will discuss In just a moment will still correct the document.

While that may seem a little strange at first. you will soon realize how useful

it Is to be able to change a document by working on a picture of It that

you have placed in a window on the tabletop. However, one important

consequence of this must be emphasized: projections always show what is

on the filed document; if that document is changed, then the picture of the

document seen In a window will have also changed. Or. put another way.

if the same part of a document is projected to two different windows and

he document is changed through one of these windows, then the same

changes will also be seen in the second window.

The Document Corrections And Printing Revisited.

In the first chapter of this tour of Screenwriter, we encountered some

techniques for correcting, removing, or printing a document that was being

created. The character keys, Insert, delete, print, and throw away were used

to accomplish this manipulation of the new (not yet filed) document. These

same keys can now be used to manipulate documents in the filing cabinet

whose projections are visible in windows on the screen.

For example, typing character keys In a window will change the

characters seen in the window, because it changes the document which is

being projected to that window. Even the name line can be changed in this

way. Just as the character keys would not force the cursor off the document

before, neither will they force the cursor out of the window frame now. The

size of your window, therefore, will determine the current margins for all

changes and additions you make with the character keys. (Note that the

window will not affect the line width of text previously created with different

margins.) Although not mentioned earlier, a document being created is in

a window of Its own and, therefore, margins can be set during document

creation in this exact same manner (eg. with window retract or expand).

To add characters to existing lines or to create new lines in the

projected document can be done as before with the Insert command. In

this case, the Screenwriter will only allow insertions which do not force the

end of the line beyond the edge of the current window frame (margin).
Delete also has the same effect as before. Deleting a carriage return .

will only work if the two lines being joined will still fit in the margins defined

by the window.

The throw away key Is just as dangerous as before because it will

also cause a document which has been filed to be removed from the file

and placed In the waste bin. To choose a document to be thrown away.

place the cursor in Its window or Its home picture name line and press the

throw away key. When this command is complete, Screenwriter will also have

eliminated all projections whose cameras or projectors were over the deleted

document and Its name line will no longer appear on the home picture.

Finally, the print command can now be described in its more general

form. When the print key Is pushed, the cursor could be In any of three

possible positions giving three different printed results. The first possibility

is that the cursor Is in a name line in the home picture. In which case the

whole document represented by the name line will be printed as it exists

In the filing cabinet. The second cursor position is In a name line of a

projection while not in the home picture. This would cause the contents

of that entire window to be printed. The final case is when the cursor is

not in a name line. This causes the picture area (le. that which can be

seen on the screen) to be printed.

As you see, these document correction. printing, and removal

commands have not changed from the way they were originally Introduced.

but have merely become more general since they now also work for documents

which have been filed in the filing cabinet and projected back to the tabletop.

The Stained Glass.

Before we introduce the new document changing commands which

deal with lines of a document rather than single characters. we need some

method of pointing to a group of lines that are visible In a projection window.

This Is done by coloring one of the panes of the window to highlight the

part of the document seen through that pane. In many respects this

highlighted area will behave like a "window in a window." The methods for

creating, expanding, retracting, moving, and deleting a pane of stained glass

are similar to the equivalent methods used for windows themselves. The

stained glass pane must be totally within the frame of a single window just

as the window must stay on the tabletop. Perhaps the simplest method of

thinking about the stained glass is to imagine a colored filter which has been

placed over part of the lens of the projector which is projecting into the

window frame.

Letter to IBM Dec
11f at all possible iti
Ihowever, that does no
lyou have included thel
IBefore we can resume

Isome reduction in thel
I Therefore, we hol
Ithere would not be apt

Consulting Services -- ACR
jered in terms of the previl
Itil January 1, 1985 or thel
Iservices the following insl
lever there is not to be a I
I Consequently, the cost Pl
Inothing without further col

FIG. UM-10 -- The Stained Glass

To create a stained glass window pane. scroll the tabletop until no

area of the window which Is above or left of the Intended pane Is visible

on the screen. Then. move the cursor until it Is in the lower right corner

of the intended pane. (Note how similar this is to the way you identified

a window area -- the only difference is that the pane must be totally within

the window area.) Finally, press the stained glass create key and watch the

area you have indentified turn to reverse video (black on white) like the name

line. If Instead of a small stained glass pane you want the entire window

to be stained glass, then place the cursor In the name line shown In the

window and press the stained glass create key.

*Stained glass expand, retract, move, and remove work as described

for the window commands of the same name (once again remembering that

the stained glass pane must stay in the window.)

The Scissors and Glue.

Have you ever wanted to snip a few lines or a paragraph out of a

document or get out your glue and add a new paragraph to your document?

Screenwriter will help you do both of these document updating tasks. For

all of the document updating commands (cut. paste, and paste&cut) you will

create a stained glass pane to Indicate the lines that you wish to move or

remove. The window will be selected by the cursor position at the time the

command key Is depressed. Any lines in the window which are even partially

colored by the stained glass will be Included in the area to cut or pasted.

A strong word of warning should be Issued here: know what part of your

window is In stained glass before you use one of these commands -- the

entire pane of the stained glass will be used as a line selection device

regardless of whether or not you can currently see the entire pane.

The cut key will remove from a document all lines which are partially

covered by the stained glass in the window selected by the cursor. A

document can not be completely removed in this manner because the name

line can not be snipped away. Of course. any gap created in the document

by the cut command Is- Immediately closed by Screenwriter who will join the

two parts back together.

The paste command requires- two keys. First, the paste key will cause

Screenwriter to copy all the lines which are partially covered by the stained

glass in the window selected by the cursor. These copied lines will then

be Inserted In the place you choose. To choose a receiving location, position

the cursor In the line of the receiving document immediately above where

the new lines are to be inserted. The accept command will complete the

action by pasting the lines Into the selected location. After you depress the

paste key. Screenwriter will remind you that it Is waiting to paste in the copied

lines with "PASTING--POSITION WITH ARROWS. END WITH ACCEPT" on the

last line of your screen.

The paste&cut key does exactly the same as the paste followed by

the cut. The effect Is to transfer lines of a document rather than just copy

them as is done with the paste command. Like the paste command, paste&cut

is terminated with the accept command.

This chapter has taken us through a review of the keys which are

useful for document correction; like the character keys. insert, delete, and

throw away. Then we found the secret of highlighting part of a window by

putting in stained glass. With this method of selecting lines from a document.

we found some stronger document updating techniques in cut, paste. and

paste&cut. However. this does not complete the tool kit that Screenwriter

gives you for handling documents. The next chapter outlines the final tool.

4. Deja Vu...

Screenwriter as you currently know it, is certainly a powerful warrior

in the *paper waro. But. the power does not end here; Indeed. the best

Is yet to come. To study the final capability available In Screenwriter for .-

dealing with documents we need to solve the riddle: "How can part of one

document actually be part of a different document?"

The Projections -- Yet Again.

The answer to the above riddle Is similar to an answer we used to

solve another problem earlier. Projecting text from one document to another

will cause the shared Information to exist in both documents. A quick review

of projections will show.that there is an even greater advantage to projecting

text from one document to another. (After all, paste already allows us to

copy text from one document to another.)

Recall that a projection Involves a camera which sees part of one

document and transmits what it sees to a projector which projects that same

picture onto a document. (If you have come to the conclusion at this point

that the tabletop Is just a large document, you are absolutely right.) Both

the area seen and the area projected to must be on an existing area of

a document. The strength of a projection depends on how recently it was

-. created (i.e. new Is strong, old is weak) and the relative projection strengths

determine what Is visible In an area where two or more projections overlap.

The final attribute of projections to remember Is that any change made to

- the area of the document seen by the camera will also be seen on the

document that Is projected onto. That is, by changing the original you also

change all projected Images of that original. It Is this last attribute that makes

projections such a useful tool in the building of documents. As an example.

consider the possibilities where an address or telephone number changes.

If you projected the address (or telephone number) rather than copying it

-.; whenever it was required on a document, then a single change to the original

address or telephone number would correct all occurrences of It In your file

of documents.

Two commands, using four keys. will allow you to utilize the power

of document building projections. Document building projections are projections

which do not involve the tabletop. but rather, involve only documents in the

filing cabinet. (Of course, you already know about the commands which create

7 77 7.

'01

and control viewing projections, that Is projections which cause documents

to appear In windows on the tabletop.) The first command is document

building projection create; it requires that both ends of the projection have

been defined. The area to be placed under the projection camera is

designated by the stained glass pane in the window pointed to by the cursor

when the camera here key is depressed. The projections will be put in the

area of the appropriate size whose upper left corner is defined by the cursor

position at the moment the projector here key Is pushed. Once the camera

and projector position have been determined in this manner, the create key

will create the projection and the effect will be immediately seen on the

document under the projector. Whereas the paste command will add a

number of whole lines to a document, creating a projection covers part of

a document which already exists and Is not at all confined to whole lines.

After the camera or projector positions have been selected. either can be

changed without disturbing the other in order to create a different projection.

The only requirement Is the areas selected must still exist in the documents

when the create key Is activated.

MERACAMERA 2

CAMER I'~WR
--- 1 -- - ; F IPROJECTOR2

DOCUMENT 2 IS BUILT FROM INIFORMATION

'011ARED0 FROM OTHER OCUMENTS

FIG. UM-11 - Document Building Projections

Perhaps some examples are required here. Suppose one of your

documents is an address list of clients and that another is a form letter to

be printed and sent to each client. In this case you would certainly want

the area seen by the camera to change to a new address before each

projection was created. However, the area of the form letter (inside address

area) to receive the projections would not change. Suppose. on the other

hand, that you had created a revised paragraph to replace a paragraph

currently in a number of contracts filed by Screenwriter. In this case the

camera would stay positioned over the revised paragraph while you would

position the projectors over the approprate part of the various contracts.

The final command for use on document building projections is

remove. To remove a projection, place the cursor In the area being projected

onto and push remove. In the area pointed to by the cursor you will

immediately see whatever was on the document but had been hidden by the

projection just deleted.

It is Important to note here that the commands insert, delete, paste.

cut, and paste&cut will not work on lines which Include text that has been

projected onto them in the manner just described. The reason for this is

that the text being projected can not be moved or removed except by changing

the projection or by changing the text under the camera. The text being

projected can not be altered by changing the area onto which It Is projected.

The throw away command will cause Screenwriter to remove any building

projections from or onto the document to be deleted.

Before leaving document building projections behind, let's look at a

couple of questions that may have occurred to you as you read this last

chapter. For example, you might well be thinking: "When do I use a viewing

projection Instead of a document building projection?* The answer Is. anytime

you wish to see a document part on the screen or wish to make changes

(including new document building projections) to a document. then the

document must first be projected to the tabletop with a viewing projection.

If you wish to have the exact same text in two different document areas so

that changes to one will be reflected In the other, then create a document

building projection.

You may also have wondered: 'Why can document building projections

not be moved, or changed in size or content like viewing projections?" The

answer to this is the different Intent of the two types of projections. Document

building projections are not likely to change while viewing projections are
almost certain to change. If for some reason a document building projection

must be changed, then it should be removed and recreated as required.

Another question that may have come to mind is: "If I make a change

to a document (say replace one character by another). then what affect does

that change have on other documents In the filing cabinet and the tabletop?*

This Is an easy but Important question to answer. Any projection (viewing

or document building) whose projection camera sees the area of the document

which has been changed will project that change (to the tabletop or the

receiving document.) In the case of the document building projection, the

document receiving the projection will be changed and the whole process

Is repeated If the changed area of this document Is under a projection

camera. Hence, with the proper projections, it Is possible for a single change

to be reflected In any number of documents and in any number of windows

on the tabletop.

5. To err is human...

It is quite likely that at some time you are going to accidently press

the wrong key or change your mind after you see the result of the action

you have just taken. Screenwriter has provided for such eventualities by
providing a single reverse key to undo what you have just done. Reverse

Is limited to undoing the Immediately preceding command. Therefore, as

soon as a new reversible key is activated, it becomes too late to reverse

the effects of a previous key. There are. however, some keys which, because

of their simplicity to correct by other means, are ignored by the reverse key.

These keys are:

1. all character keys and return

2. the arrow keys. page up. page down, top. and bottom

3. acep %

4. delete

5. print

6. reverse

7. quit

That Is. any one of the other special Screenwriter command keys can be

reversed If it Is the most recently activated of these keys. Reversing the

home key returns the screen to Its position at the moment when the home

key was depressed. Multiple key commands (eg. those using arrows to give

direction) are reversed completely -- thereby reversing the effects of the

entire command.

it should also be obvious that reverse Is not the only way to undo

actions you have commanded Screenwriter to perform. If you look once again

to fig. 1 which shows the keyboard arrangement. you will note that the lowest

level of special Screenwriter command keys Includes only keys which cause

movement, size change and character Insert/delete (and printing). Any of

these commands (except print) can be easily undone with one of the

commands from the same level and often by using the same command In

the opposite direction. Of course, this type of change can be done at any

time and Is, therefore, more general than reverse. The middle level of special

command keys are mainly the create keys and can easily be undone with
the upper level destruction keys. The destruction keys. of course, are much

S. more difficult to undo than the other keys. Often, the alternative to the reverse

key for undoing the effects of a destruction key Is the complete recreation

of the object (eg. document, window, stained glass pane, or projection) which

was destroyed. The top level of special command keys. consequently, must

be used with caution. This Is why each one requires the auxiliary key to

also be depressed, and why Screenwriter may question your desires even

further. Note that the only way to reverse the effect of the quit key Is to
* reactivate Screenwriter.

We always hope never to made a mistake and push the wrong key.

but If It happens. Screenwriter will usually help you correct the error If you

simply tell It to reverse the key.

S. And to all a good night...

-~ The capabilities of Screenwriter have now all been explained and so
all that remains Is to clean up the tabletop and ensure that the documents

are safe and secure In the filing cabinet. The clean y2 key will cause

Screenwriter to do this for you. Since this Is a destructive command.

Screenwriter will ask you permission to carry out the command by asking:

"SHALL I CLEAR THE TABLETOP?" If you reply by depressing the "Yo key

then Screenwriter will remove all windows from the tabletop and send you

4 to the home picture.

The quit command stores away all projections and documents so that

the next time you activate Screenwriter you will be able to begin work where

you left off.

..

Hopefully you now understand what Screenwriter does for you in the

creation. display. and storage of documents. Each time you push a key,

try to visualize how it Is setting to work on the documents, filing cabinet, 0

projections, or tabletop In order to carry out your command. This approach

will help you understand what to expect each key to do for you so that you

can more effectively employ Screenwriter.

'-I.

.. ..

Sii2:

4. .. . - - 7 . .- . - , - .77 7

.4- ..

CHAPTER V.. 4..

The Detailed Baseline

Included here from the detailed baseline documentation is the final

portion of the formal design specification and the system Implementation plan.

A partial implementation based on this specification and implementation plan

has been accomplished, but will not appear In this volume.

--1 -'

.4 °

V.1 Detailed Design.

This design Is a continuation of the filer/viewing system design

specification presented in Chapter IV. The other decomposed components

of the system will be recomposed with this component In the later levels of

the design.

A

:-r-

I"

7 9% V 71- Z

FILER4

Basis:

Prior: FILER3

Forward: FILING CABINET4.1 / PROJSET4.2 / DISPLAY4.3

Comments:

This level decreases the specification to include only the family of

systems with rectangular and finite components such as projection slaves and

masters, areas of filter application, documents, and the display (screen).

The decision to require these components be rectangular in area is

not as restrictive as might first be Imagined. Nearly all documents (from

margin to margin) and screens are, by their very nature, rectangular. With

this in mind, consider the types of information in this mainly textual system

which the user Is likely to project or filter. He might project a speck, a

word, a line, a paragraph, a page, a document, or some multiple of one

of these. Obviously, in our rectangular coordinate system a speck (and

hence also a word) is rectangular. Now, if we consider a document as

rectangular from margin to margin, then the rectangular lines must be

constant length within a document. Paragraphs and pages (each a series of

consecutive lines) would also be rectangular. Any information of a less normal

shape which the user might wish to project or filter could easily be described

as a combination of these basic rectangular objects.

Additionally, it makes sense to require that there be an even slightly

more rigid connection between the shape of a slave and its master than a

, shared rectangularity. Since It Is unlikely that a user would wish to respell

a word ie. mix letters of the word) as it is being projected, for example,

the relative position of each point in a slave should be the same as the

corresponding master point relative position in the master. This means that

the projection Is not only rectangular on both ends. but that the two rectangles

are equivalent In size and shape, with projections going between

corresponding positions within the rectangular areas. This same equivalence

relationship should also be true between the screen area and the area of

document seen on the screen.

The requirement that the parts of the system be finite is not

significantly restrictive to the system since we are using a discrete (integer)

coordinate space.

FlUNG CABINET4.1

Basis:
Prior: FILING CABINET1.1 / FILING CABINET3.1

Comments:

The documents in the filing cabinet are rectangular in shape and

must be finite In size.

Requirements / Design Decisions:

[1 All documents must be finite and rectangular (that is. all lines are a

constant length).

[21 For simplicity, all documents must start in coordinate (1,1). This in

no way limits the document but does facilitate the system specification.

Auxiliary Definitions:

We can now define the meaning of being rectangular. We know that

a rectangle is always uniquely defined by its diagonal. Therefore, we define

a pair of functions to find the smallest and the biggest of a finite set of

coordinates.

a.
smallest,

biggest :F, (coordinate) -- coordinate

smallest (S) a A(c S I (Va S) (c a))
biggest (S) bU(c SI (Va :S) (c)a))

The smallest coordinate Is the leftmost coordinate in the top row

of coordinates. The biggest coordinate Is the rightmost coordinate in the

bottom row of coordinates. These definitions are consistent with our

lexicographical orderings (and >.-_-

Now, determine which coordinates a rectangle defined by the smallest

and the biggest coordinate should include.

Il lll l l l llll i lllrl m~l L

b.

area coordinate x coordinate - P (coordinate)

area ((a,b)

(x(a)..x(b)) x (y(a)..y(b))

This defines the set of coordinates which Is rectangular based on

given smallest and biggest coordinates.

C.

is-rectangle P (coordinate) -o boolean

is-rectangle a (XC)

C 0 0 area (smallest(C),biggest(C)) - C

An empty set of coordinates is rectangular by definition. Any other

set of coordinates is rectangular if It Includes only the coordinates in the

rectangular area defined by the biggest and smallest (ie. the diagonal)

of the given set.

State Component Definition:

FILING CABINET4.1]...
FILING CABINET1.1

(Vx : dom (documents))

[iJ (is-rectangle (dom (documents (x))) A

lji dom (documents (x)) e F (coordinate) A

[2] smallest (documents (x)) - (1,1))

This restriction of FILING CABINET requires that all documents be

rectangular and finite.

- .-----------------.- v-- s - ---

PROJSET4.2

Basis:

Prior: PROJSET3.2 1 FILING CABINET4.1 (Auxiliary Definitions)

Comments:

The slave and master of all projections must be rectangular, finite,

equivalent areas. The area transformed by any non-identity filter in a

projection must also be rectangular. These are reasonable restrictions

because we commonly work with only rectangular areas of text. This

specification restricts the PROJSET2 appropriately to enforce these

requirements. -

Requirements I Design Decisions:

1 11 All projection slaves and masters are finite, rectangular areas.

12] The slave and master of any projection are equivalent areas in size

and shape, with the projection defining corresponding positions within these

areas. Besides ruling out scaling and skewing, this eliminates any arbitrary

information jumbling.
* 3] Any area of non-Identity filter application within a projection slave area

is finite and rectangular. "S

Audiliary Definitions:

a.

strip P (COORD) - P (coordinate)

strip a (AS)

S"coord 0 S 0

This reduces a set of COORD to a set of coordinates by removing

the docname from each COORD.

*-5%-

-. " " -". -°. -

* b.
is-eqshape projection -* boolean

is-eqshape (XP) O9

a:. (3n)

P = (Xc) (c + n)

This constant defines the concept of equivalent areas of size and

shape for the slave and master of a projection. Less abstractly we could

say that for any point in the slave, the corresponding point in the master

£ must be equal to the difference between the slave coordinate corresponding

to the smallest point in the slave, and the smallest point in the slave

minus the given slave point. In other words, the smallest slave point and

Its corresponding master point are used as the origins of the two areas and

all other coordinate positions are computed relative to these.

State Component Definition:

PROJSET4.2

PROJSET3.2

(Vx dom (projlist))

il (is-rectangle (strip (dom (projlist (x)))) A

dom (projlist (x)) e F(COORD) A

131 is-rectangle (strip (dom (filterlist (x)

/ J(speck))))
A

[21 is-eqshape (projlist (x)))

PROJSET3.2 is restricted as required. The fact that the domain

of a projection Is finite Implies that the range of that projection and Its

associated area of filter application are also finite. If the slave of a projection

is rectangular and the master Is the same shape, then It is obvious that

the master is also rectangular.

DISPLAY4.3

Basis:

Prior: DISPLAY3.3 IFILING CABINET4.2 (Auxiliary Definitions)

Comments:

This restricts the screen to a rectangular area which displays a

rectangular area of the chosen document. For textual displays, this Is a

normal restriction.

Requirements IDesign Decisions:

I[j The area which is displayed on the screen must be rectangular and

finite.

State Component Definition:

DISPLAY4. 3

- DISPLAY3.3

[11 is-rectangle (strip (seearea)) A

seearea e F (COORD)

FILER4

State Definition:

FILER4 aFILER3

(FILING CABINET1.1 FILING CABINET4.1;

PROJSET3.2 i~4PROJSET4.2;

DISPLAY3.3 DISPLAY4.3)

This new state space Is FILER3 with the accumulated component

restrictions added.

.4

FILER4A .

Basis:

Prior: FILER4

Forward: FILING CABINET4.1A / PROJSET4.2A / DISPLAY4.3A

Comments:

This first refinement introduces arrays as a representation of tables

and functions. This representation eases the specification of rectangular while

bringing the specification closer to a high level language Implementation.

Additionally. it Introduces a different and more convenient method of

defining a rectangular area of coordinates as required for slaves, masters.

ares of filter application, and the area visible to the user. A finite rectangular

plane can be fully described by its starting point (eg. upper left corner) and

its size (eg. the length of its diagonal.) Although this is not the only possible

representation for a rectangular plane. it has the desirable feature that

compositional operations (see FILER1) can be specified with addition and

subtraction of coordinate pairs.

'I

'-.°

FLUNG CABINET4.1A

Basis:

Library: ARRAY

Prior: FILING CABINET4.1

Comments:

The use of a table (array) Is a common and well understood method

for storing a number of individual pieces of information (in this case specks).

It is also useful because It can be easily defined in a finite rectangular shape

to accommodate previous design decisions. Of course, high level

programming languages allow the declaration of arrays so this step puts the

specification slightly closer to the eventual implementation.

Auxiliary Definitions:

a.

DOCM-NTCLASS

table ARRAY [speck]

rows : ""

colo : JV

rows- length (table)

(Vx 1..rows) (length (table (x)) -cols)

We create the new description of a rectangular document using an

array. This array will be a table of specks which are the content of

the document. The size of the table is defined by rows and cols which

represent the number of rows and columns in the table. Of course. this

makes the shape of the table rectangular and finite. The table will

correspond to the extent of the document as we previously defined It:

however, there is no restriction from allowing part of the background paper

(le. the margins of the document) to be included in the extent if we choose

to define it that way.

I...

b.

retv-surface DOCUMENTCLASS -. surface

retv-surface a (XD)

(kc I (1,1) P c > (cols,rows))

table (y (c)) (x (c))

Given a document description and a coordinate in the extent of the

document. this function wilt return the speck which appears at that coordinate.

The proper speck is generated by entering the table at the row and column

defined by the coordinate. This function causes the table to appear as if

it were a surface.

State Component Definition:

FILING CABINET4.1A

FILING CABINET4.1

docdata docname - DOCUMENTCLASS

dom (documents) - dom (docdata)

(Vx dom (docdata))

(biggest (dom (documents (x))) - (cols,rows))

(Vx doam (docdata))

(documents (x) - retv-surface (docdata (x))

- ~ For each document. there Is an table which is accessible by the

document's name. The tables are exactly the same size as the extent

of the corresponding document so that a one to one translation between the

document and the table representing it is easily done. Remember, to this

point the only design decision taken about documents Is that they must be

finite and rectangular -- conditions which are obviously enforced by this

refinement.

• Notice: In future usage, since rows and cols are derived

components, we will use the abbreviation:

docdata (x)

to represent:

table (docdata (x))

,.!

PROJSET4.2A

Basis:

Library: FUNCTION

Prior: PROJSET4.2

Comments:

When two related areas of tables are to be equivalent In size and

shapethe easiest description possible of the projection relating those areas

Is two starting spots and a size/shape description. And, when the areas

are rectangular, the size/shape description is simplified to a pair of row and

column size values. Similarly, a rectangular filter application area can easily

be defined. The actual filter Is a total function which is also described by

an array.

Auxiliary Definitions:

a .

PROJCLASS

2- slavespot COORD

masterspot COORD

projsize coordinate

startpane coordinate

panesize coordinate

f : FUNCTION (speck "

aread(startpane,panesize) £

aread(coord (slavespot) ,projsize)

* projsize > (0,0)

panesize) (0,0)

Any projection between rectangular areas on rectangular documents

can be described by two starting points (smallest points of the slave and

master) and a size denoted by the number of rows and columns Included

In the projected area. The single rectangular filter application area Is

described by a starting point (smallest point) and a size. Note that the

first predicate requires the area of the filter application to be completely on

the slave area. The filter to apply in the specified pane (like a window

pane) area Is represented In the form of an array with two rows -- one

row for the domain and the other for the range -- with the column numbers

acting as a link between the appropriate members of each row.

b.
aread coordinate x coordinate -* P(coordinate)

aread (a,s) - area (a, a + s - (1,1))

This simple function allows the creation of a rectangular area from

a smallest point and a size rather than a smallest and a biggest

point.

C.

retv-projection PROJCLASS-- projection

retv-projection .

(XS)

(v COORD I dn dn (slavespot (S)) A coord e w)

dn' -dn (masterspot (S))

coord' -coord (masterspot (S)) + coord-

coord (slavespot (S))

where

w- aread (coord (slavespot (S)), projsize (S))

Given a refined projection description, any coordinate in the slave

area Is translated to a coordinate In the master area by adding the vector

from the slave starting point and the given coordinate, to the master starting

point.

d.

retv-filter-apply PROJCLASS -pfilter-apply

-retv-filter-apply a (S

((COOED -(3(speck))) P w) I

((COOED -. (retv-filter (f (S)))) P z)

where

w -(c COOED Idn (c) -dri (slavespot (5)) A coord (c)

e w)

z [d COOED Idn (d) - dn (slavespot (S)) A coord (d)0

6 zz)

w - aread (coord (slavespot (S), projsize (S))

zz -aread (startpane (5), panesize(S))

arnd retv-filter FUNCTION -. filter

'4retv-filter aXF

(Xs :speck)

F (2) (F (l)-11()

Given a refined f ilter-apply description, a coordinate In the filter
application area of the slave will return the filter represented by the -

FUNCTION, while a coordinate In the slave area but outside the area of filter .

application will generate the Identity function.

Stats Component Definition:

PROJSET4.2
PROJSET4.2A

projdata :SEQ [PROJCLASS]

doin (projdata.) -dom (projlist)

(Vx doin (projdata))

(projlist (x) - retv-projection (projdata (X)) A

(filterlist (x) -retv-filter-apply (projdata (x)))

It Is obvious here that the previous design decisions concerning the

size and shape of the slaves, masters. and areas of filter application are

Inherent in this new representation. Indeed, so complete and accurate Is

this representation of PROJSET that all previously defined restrictions on the

*state are Implicit In this new state representation.

• "

DISPLAY4.3A .

Basis:

Prior: DISPLAY4.3 / PROJSET4.2A (Auxiliary Definitions)

Comments:

As done In the FILING CABINET and PROJSET. the rectangular

area In the DISPLAY is decribed by a starting point and a size value.

Auxiliary Definitions:

a.

DISPLAYCLASS

screenstart COORD

screensize coordinate

screensize > (0,0)

The rectangular screen is defined by a starting point (smallest

point) and a size denoting the number of columns and rows on the screen.

b.

areadC COORD x coordinate -- P(COORD)

areadC (C,a) - [c COORD I dn (c) - dn (C) A

coord (c) e aread (coord (C),a))

This function creates a rectangular area on a specific document from

the smallest point of the area on the document and the size of the intended

area.

-- 0:

4.j.

retv-display DISPLAYCLASS -. P(COORD)

retv-display a (XD)
* areadC (screenstartescreensize)

The three dimensional area defining function Is used to derive the

screen from a starting point and a size.

State Component Definition:

DISPLAY4. 3A

DISPLAY4.3

DI SPLAYCLASS

seearea -retv-display (DISPLAYCLASS)

The refined description obviously satisfies the earlier design decisions

that the screen shouid be rectangular and finite, and allows for an easy return

to the previous representation.

FILEROIA

Stats Definition:

FILER4A aFILER4

(FILING CABINET4.1 -PFILING CABINET4.1A;

PROJSET4.2 PVPROJSET4.2A;
DISPLAY4.3 PVDISPLAY4.3A)

-~The new state Is simply a combination of the refined state

components.

.o.

.5..

FILERS

Basis:

Prior: FILER4A

Forward: FILING CABINET5.1 / PROJSET5.2 I DISPLAY5.3

Comments:

The current design allows the user to specify any document in the

filing cabinet as the document he wishes to view. This advancement of the

design will restrict the user to viewing one specific, permanent document in

the filing cabinet called tabletop. This permanent viewing document can

be most easily envisioned as a flat tabletop on which various documents are

arranged (projected) for viewing. As before, any combination of the other

documents in the filing cabinet can be seen; but now the proper projections

of the required documents to the tabletop must be defined.

Because of the restriction to view only the tabletop document, we

can distinguish between two different types of projections: building projections,

which share Information between documents, and viewing projections, which

define the screen document. Since the screen appearance will be directly

derived from this later type of projection, only viewing projections will ever

need filter application areas.

.4..

',,1

FILING CABINET5. 19

Basis:

Prior: FILING CABINET4A

Comments:

The filing cabinet will be required to always contain the document

which will be displayed (in part) to the user. This document is called the

tabletop because It Is similar in usage to a tabletop upon which papers

have been arranged by the user.

Requirements I Design_ Decisions:

[1] The screen document must be permanent in the FILING CABINET.

Audllary Definitions:

a. tabletop e docname

Define tabletop to be a member of the abstract set of allowable

document names.

State Component Definition:

SFILING CABINET5.1
FILING CABINET4.1A

,l]i tabletop e dom (docdata)

The FILING CABINET will always contain the document called

tabletop.

PROJSET5.2

Basis:

Prior: PROJSET4.2A

Comments:

This level of the PROJSET specification will begin to differentiate

between two different types of projections -- the building projections and the

viewing projections. Since the user only sees documents arranged on the

tabletop, only the projections to the tabletop (viewing projections) ever

need to have a filter. Therefore, we can specify that projections which do

not have a slave on the tabletop (building projections) will not have a

filter area. We also wish to eliminate the tabletop as a projection master

because doing so will remove the possibility of unnecessary circularity without

a loss of capability.

Requirements I Design Decisions:

[If The tabletop Is never the master in a projection.

12] Building projections have no requirement for filtering of the slave.

State Component Definition:

PROJSET5.2

PROJSET4.2A

(Vp ran (projdata))

[11 (dn (masterspot (p)) 0 tabletop A
w

.21 (dn (slavespot (p)) 0 tabletop

panesize - (0,0)))

The state component Is restricted as required by the design decisions.
-S '

DISPLAYS.3

Basis:

Prior: DISPLAY4.3A

Comments:~

We can now require that the user select only a portion of the tabletop

document to view.

Requirements / Design Decisions:

I] The screen displays (part of) the screen document (tabletop) only.

State Component Definition:

DISPLAYA

DISPLAY4.3A

[I] dn (acreenstart) -tabletop

FILERS

State Definition:

FILERS FILER4 9

(FILING CABINET4.1A j~FILING CABINET5.1;

PROJSET4.2A -VPROJSET5.2;

DISPLAY4.3A -pDISPLAkY5.3)

The refined F ILER state space Is a simple restriction of the previous

state space definition.

Of course. tabletop Is a derived component since In FILERi we

defined what the appearance of every coordinate potentially visible to the user

would be. Consequently,

(VS :FILER5)

docdatal (S) (tabletop) -fileviewl

(FILE-APPEARANCEE [FILER5/S];

PROJECTED-APPEARANCEILERS;

APPEARANCEFILES)

W• 2

FILER6 0

Basis:

Prior: FILERS

Forward: FILING CABINET6.1 / PROJSET6.2 / DISPLAY6.3

Comments:

This specification level defines a number of size and extent limitations.

- Many of these limitations will be only abstractly defined so that actual values

can be given to them after additional functional decisions and non-functional

requirements have been defined.

K..

FLUNG CABINET6.1
.4

Basis:

Prior: FILING CABINET5.1

-, 'Comments:

The limitations to be placed on the filing cabinet Includes a maximum

allowable number of documents in the filing cabinet. Additionally, the filing

cabinet can be simplified by restricting the background colors available.

Requirements / Design Decisions:

[1] The background -paper color for all documents and the filing cabinet

background color will be the same.

(2] The tabletop must have a maximum size.

131 All non-viewing documents must have a maximum size.

143 The filing cabinet has a maximum number of documents that it can

hold.

Auxiliary Definitions:

We define abstract limits for the filing cabinet here.

a. backcolor e speck

b. tablelength c IV

. tablewidth e IV

c. maxdoclength e IV

maxdocwidth e IV

d. maxdocno e JV

J'-'i-

,*1

. -

State Component Definition:

FILIN CABIET60

FILING CABINET6.1

[1] (Vp ran (colors)) (p -backcolor)

III] filecolor -backcolor

121 rows (docdata (tabletop)) -tablelength

cols (docdata (tabletop)) -tablewidth

[3] (Vd dorn (docdata) -(tabletop))

(rows (docdata (x)) 4 maxdoclength A

cols (docdata (x)) 4 maxdocwidth)

[4] card (dom (docdata)) 4 maxdocno

The desired limitations are placed on the previous state component

* definition.

• - *..* -:....-:.- ..- .

PROJSET6.2

Basis:

Prior: PROJSET5.2

Comments:

The viewing projections have been restricted here to filters of reverse

40 video (dark on light) only. This decision Is based on the normal capability

of the textual display screen likely to be used with this system. Also. The

maximum number of projections allowed In the system has been limited.

Requirements / Design" Decisions:

1 1 The only filter available will be reverse video.

121 The total number of projections allowed is limited.

Auxiliary Definitions:

a. revvideo e filter

b. maxproj e IV

State Component Definition:

PROJSET6.2

am

PROJSET5 .2

[111 (Vp ran (projdata))

(revvideo - retv-filter (f (p)))

121 length (projdata) 4 maxproj

DISPLAY6.30

Basis:

Prior: DISPLAY5.3

Comments:'

This advancement commits the design to a constant sized screen.

Since almost all textual screens are of fixed iength and width. this Is not

a significant restriction of capability.

* Requirements IDesign Decisions:

I[] The screen on which the user sees the tabletop will have a constant

size.

Auxiliary Definitions:

a. screenlength e NV

screenwidth e IV

* State Component Definition:

DISLA6.

* DISPLAY5.3

ffl] screensize -(screeriwidth, screenlength)

FILIERO

Comments (con'O:

Here we will require that projections link documents which exist within

the filing cabinet. This will Impose a policy of projection deletion when a

master or slave document is deleted. We also require that the area displayed

to the user Is totally In the limited extent of the tabletop.

Requirements /Design Decisions:

* Il The slave and master documents of all projections must exist In the
N. filing cabinet.

-' 12] The master of all projections must be entirely on the paper of the

master document.

(31 The slave of viewing projections will stay on the tabletop. 4

[41j The area of the screen must be entirely on the tabletop.

State Definition:

FILER6

FILER5(FILING CABINET5.1 " FILING CABINET6.1;

PROJSET5.2 ",. PROJSET6.2;

DISPLAY5.3 -VDISPLAY6.3)

111 (Vp ran (projdata))

(dn (Jasterspot (p)) e dom (docdata) A

dn (slavespot (p)) c dom (docdata) A

121 strip (areaC (--gterspot (p), projsize)) g

(cola (docu~ta, (dn (masterspot (p)))),

rows (docdata (dn (masterspot (p)))))

*131 (Vp ran (projdata)

dn (slavespot (p)) -tabletop)

(strip (areaC (slavespot (p), projsize))

area ((1,1), (tablewidth,tablelength)))

[41 aread (coord (screenstart)), screensize)

area ((1,1), (tablewidth,tablelength))

FILER7

SBasis:

Prior: FILER6A

Forward: FILING CABINET7.1 / PROJSET7.2 ~is2

Comments:

With this specification we begin to include the lower level details of

the desired system by introducing another specialized document called

homedoc. This permanent document contains the significant information the

user wishes to supply about each user defined document In the filing cabinet

(le. the namelines of the documents.) The homedoc will also hold

Information about the length of the documents. The restrictions imposed here

are all required to define the necessary home document.

o,

"4:.

-- - . 7 7

FILING CABINIET7.1

Basis.

Prior: FILING CABINET6.1

Comments:

This advancement places the homedoc permanently In the filing

cabinet and defines Its size.

Requirements IDesign Decisions:

Il1i] The home document Is always In the filing cabinet.

121 The width of the home document is the same as the maximum allowable

document width.

13]3 The length of the home document Is determined by the number of

documents In the filing cabinet excluding the tabletop document.

Auxiliary Definitions:

a. homedoc e docname

Stats Component Definition:

FILING CABINET7.1

FILING CABINET6.1

1] homedoc e dom (docdatal)

121 cols (docdata (homedoc)) - maxdocwidth

* 131 rows (docdata (homedoc)) - 2

(card (dorn (docdata)) -1)

•

PROJSET7.2

Basis:

Prior: PROJSET6.2 / FILING CABINET7.1 (Auxiliary Definitions)

Comments:

Now that we have the document namellnes gathered together on the

homedoc we do not want the appearance of the homedoc to be spoiled

. by projections to It. Therefore. we eliminate the possibility of the homeline

document ever being the slave of a projection. We also specify that every

normal window on the tabletop must have its appropriate nameline at the

top to Identify the document being displayed. In order to protect the user

from misplacing windows by making them too small to see, we require that

part of the namellne must always show, even if the window It tops Is too

small to be visible.

(Since viewing projection slaves appear like windows onto a document.

we shall use that term whenever discussing tabletop areas which contain a

document projection.)

Requirements / Design Decisions:

i The home document is never the slave In a projection.

1'21 For each viewing projection which does not have the home document

as its master, there Is Immediately following it in the projection list a nameline

projection from the home document to the top of the viewing projection
window. ::::

[31 Namellnes always appear In reverse video at the top of a window.

[41 A projection must always be at least one column wide so that its

• . nameline will never disappear from the screen.

S-.

State Component Definition:

PROJSET7.2

K PROJSET6.2

[1] (Vp ran (projdata)) (dn (slavespot (p)) "homedoc

S11 A dn (slavespot (p)) -tabletop

projsize (p) > (1,0))

4bf2 &31 (Vp ran (projdata)

dn (masterspot (p)) 0 homedoc)

A dn (slavespot (p)) - tabletop)

(q up + 1 A

dn (masterspot (q)) - homedoc A

dn (slavespot (q)) -tabletop A

coord (slavespot (q))-

coord (slavespot (p)) -(1,0) A

retv-filter (f (q)-revvideo A

projsize (q) - (x (projsize (p)), 1) A

startpane (q)-

coord (slavespot (p)) -(1,0) A

panesize (q) -(x (projsize (p)), 1))

Notice that the masterspot for the nameline projection has not

been defined here. it can be more easily specified In the FILER7 definition

which follows.

FILER7

I%

Comments (con'O:

In this specification, we had to add a new component to the definition

of FILER. This new component defines the relationship between the existent

filing cabinet documents and the lines of the home document which contain

the namelines. This simple function will help build the nameline

projection required with each of the viewing projections.

Requirements I Design Decisions:

[1 For each non-tabletop document a unique entry of nameline and

document length is made on homedoc.

[21 The home document nameline is the first entry in the home document.

Auxiliary Definitions:

a. marker e speck

This will abstractly define the speck to be used as a document length

Indicator on the homedoc. Each occurrence of the marker represents 10
V.

4

lines in the document except for the last occurrence which could represent

any number of lines up to (and Including) ten.

b.

odds a {2n + 1 I n 1V-)

The odds set will define the lines of the homedoc which contain

namelines. The remaining (even) lines of the homedoc contain the

document length Information appropriate to the document described by the

previous name 1lne.

..,1

State Component Definition:

F I LE9
FILER6

(FILING CABINET6.1 " FILING CABINET7.1

PROJSET6.2 P4 PROJSET7.2)

point docname >- odds

gij] dom (point) -dom (docdata) - (tabletop)

A ran (point)

(a.: odds Ia < 2*(card(docdata)-1))

[11 (Vd dom (po int))

(3x :-SEQ ((maiker,baclccolor) I

card (x J (marker))

(rows (docdata. (d)) + 9) DIV 10 A

x -homedoc (point (d) + 1))

12! point (homedoc) I

(Vp ran (projdata)I

dn (masterspot (p)) 0 homedoc A

dn (slavespot (p)) - tabletop)

(q-p + 1 A

coord (masterspot (q))

(point (dn (masterspot (p))), 1))

This new filer definition creates the nameline document and the -

* relation which connects the documents to their respective namelines.

Notice that the nameline projections partially specified In PROJSET7.2 Is
completed here with the definition of where to find the required nameline. -

Qp

(2

IFILIER7A

Basis:

Prior: FILER7

Forward: FILING CABINET7.1A / PROJSET7.2A / DISPLAY7.3A

Comments:

This refinement will simplify the state space by removing the tabletop

* document from the list of filing cabinet documents. Since it is a highly

specialized document and is In general not subject to the same restrictions

and operations as the other documents, Its disassociation from the rest of

the documents serves -to eliminate some of the previously required state I"

predicates and operation preconditions.

Similarly, we can create separate projection lists for the viewing and

building projections; thereby, facilitating the definition of required operations

on the different projection types. At the same time, we will eliminate from

the projection list the explicit (but derived) nameline viewing projections

which are used to top the normal viewing projections.

A..-

4i

0t'-'
St

41

2.::

MW.. -JM4 4% i7; f. o- . . . -W-

* FlHUNG CABINETM.A

4. Basis:

Prior: FILING CABINET7.1

Comments:

We can now easily remove the tabletop from the rest of the

documents In the filing cabinet.

State Component Definition:

FILING CABINET7.1k

FILING CABINET7.1

tabletop DOCUMENTCLASS

docdatal docname -~DOCUMENTCLASS

tabletop %dom (docdatal)

docdata - docdatal I (tabletop I.*tabletop)

The relationship between the old state component and the new state

component Is straightforward.

PROJSET7.2A

Basis:
Prior: PROJSET7.2

Comments:

Here we have created different schemata for the two different types

of projections, allowing the elimination of the unneeded derived components

* of the projections. The separation of the projections Into two iists does not

aiter the ordered property of the projection list (le. relative projection strength)

because the two types of projections never have slaves on the same doc~ument.

* Auxiliary Definitions:

a.

PROJCLASSB_________________________

slavespot COORD

masterspot COORD

projoize coordinate

projsize > (0,0)

p The new building projection definition makes use of the fact that no

filter or area of filter application (which we will call stained glass from flow

on) Is required on this type of projection.

-. ' .b

... "

b.

PROJCLASSV

slavespot coordinate

iasterspot COOED

projsize coordinate

startpane coordinate

panesize coordinate

projsize > (1,0)

panesize > (0,0)

aread (startpane,panesize)

aread (slavespot,projsize)

Viewing projections have a predetermined slave document (tabletop)

and filter (revvideo) so these derived components can be removed from

the projection definition. Of course, the stained glass area must still remain

on the window and the window must always have some width.

C.

maxvproj e NV

maxbproj e IV

We can replace the general restriction on the number of svojectlons

by Individual maximums on the two different projection types.

d.

retv-vprojection PROJCLASSV -. (coordinate -~COOED)

retv-vprojection (XP

(kc Ic

aread (slavespot(P),proJsize(P)))

(dn(masterspot(P)),

(coord(ntasterspot(P))+c-slavespot(P)))

This function recreates a viewing projection from a PROJCLASSV

schema.

retv-bprojection PROJCLASSB -. projection

retv-bprojection a(XP)

*(XC Idn(C) -dn(slavespot(P)) A

coord(C) c

aread(coord(slavespot(p)),

* projsize(p)))

(dn(masterspot(P)),

(coord(masterspot(P))+coord(C)-

coord(slavespot(P))))

Now we can retrieve a building projection from Its new schema

representation.

State Component Definition:

PROJST7.2
PROJSET7.2A

projbuild SEQ [PROJCLASSB]

projview SEQ [PROJCLASSVJ

length (projbuild) 4 maxbproj

length (projview) 4 maxvproj

(Vi,j dom(projdata)I

dn(slavespot(projdata(i))) 0' tabletop A

dn(slavespot(projdata(j))) #tabletop A

i <J)

(3p,q dom(projbuild)I

*p < q A

retv-projection(projdata(i))

* retv-bprojection(projbuild(p)) A

retv-projection(projdata(j))

retv-bprojection(projbuild(q)))

* (Vi,j dom(projdata)I

dn(slavespot(projdata(i))) -tabletop A

dn(slavespot(projdata(j))) -tabletop A

i < :J)
(3p,q :dom(projview)I

p < q A

retv-projection(projdata(i)) (tabletop,c)-

retv-bprojection(projview(p)) (C) A

retv-projection(projdata(j)) (tabletopc)-

retv-bprojection(proj ;iew(q))(c))

length(projdata/(PROJCLASS~dn(masterspot/homedoc]))

length(projbuild)

length(projview/(PROJCL.ASSV~dn(masterspot/homedoc]))

Since a projection from the building projection list cannot possibly

cause a slave overlap with a projection defined In the viewing projection list.

the relative order of the projections between the two lists is unimportant.

That is, any recombination of the two lists which preserves their Individual

orderings will produce a list equlvqlent to the original projection list.

Operations:

The following operations adhere to the previously defined policy of

using composition to move or size objects where possible. With projections

defined by starting points and sizes, the addition of an offset becomes the
functional equivalent of composition. All but the final operation Involves

projections of the viewing type.

a.

movewindow PROJCLASSV x coordinate -. PROJCLASSV

movewindow a (XP,o)

PROJCLASSV [slavespot/slavespot(P) + o;

masterspot/masterspot(P);

projsize/projsize(P);

startpane/startpane(P) + o;

panesize/panesize(P))

Moves the window and Its associated stained glass according to the

given offset...

b.

movesg PROJCLASSV x coordinate -. PROJCLASSV

movesg a (XP,o I aread(startpane(P)+o,panesize(P))
c aread(slavesspot(P),projsize(P)))

PROJCLASSV [slavespot/slavespot(P);

masterspot/masterspot(P);
proJsize/projsize(P) ;

startpane/staztpane(P) + o;

panesize/panesize(P)]

Moves the stained glass by the offset amount.... The stained glass

must remain within the window.

C.

sizewindow PROJCLASSV x INT x INT x INT x INT

-~PROJCLASSV

sizewindow *()XP,u,d,l,r I
proJsize(P)+(r,d)+(1,u) > (1,0))

PROJCLASSV [slavespot/slavespot(P) - (1,u);

masterspot/masterspot(P)-

(1,u);

prolsize/projsize(P) +

star tpane/startpane (P);

panesize/panesize(P)

Adjusts the size. of the window by adjusting the location of each of

the window sides.... The projection nameline must still be visible after the

size change.

da.

sizesg PROJCLASSV x INT x INT x ENT x INT

-PROJCLASSV

sizesg (XP,u,d,l,r Iaread(startpane(P)-(1lu),

panesize(P)+(r,d)+(1,u)) q

aread(slavespot(P),projsize(P)) A

panesize(P)+(r,d)+(1,u) > (0,0))

PROJCLASSV (slavespot/slavespot(P);
masterspot/masterspot(P);

* projsize/projsize(P);

startpane/startpane(P) -(1,u);

panesize/panesize(P) +

(r,d) + (1,u)J

To change the size of the stained glass area.... The stained glass

will remain on the window and not have a negative size.

AD-A132 569 FORMAL TECHNIQUES IN THE MANAGEMENT OF SOFTWARE DESIGN 3/4
(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH
W E RICHARDSON 17 JUN 83 AFIT/CI/NR-83-28D

UNCLASSIFIED F,.G 9/2 NL

*uuuuuuuurniuIIIIIIIIIIIIIu
IIIIIIIIIIIIIu
IIIIIIIIIIIEI
EEEEEEEEEIIEEE
lllllElllllhhE
IIIIIIIIEEEEI

.9i

2&L

11111u 1.6m0_

|L&
1I~.25.111 .,4 1111.16

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o-ft'4'" ' "",-, "" ; ,1" , ""%'."" ' , "J ".""",."", ,"", .- ;' , ",-" " i" "''"''
" "

" ''; *'' : " '''"":
"

": , '''"" "

'a.

removeag PROJCLASSV -. PROJCLASSV

removegg (XP
PROJCLASSV (slaespot/slavespot(P);

masterapot/masterspot(P);

projsize/projaize(P);

startpane/startpane(P);
panesize/(0,0)]

This will remove the stained glass.-

createsg PROJCLASSV x coordinate x coordinate -

PROJCLASSV

*createsg, (k~P,startc,stopc Istartpane(P) -(0,0)

J. A startc '4 stopc)

PROJCLASSV (slavespot/slavespot(P);
masterapot/masterspot(P);

- projaize/projsize(P);

startpane/startc;

panesize/stopc-startc+(1,1).]

4- To create a stained glass area, there must not be such an area

associated with the projection already and the diagonal of the desired stained

glass area must be properly defined.

scroildoc PROJCLASSV x coordinate -. PROJCLASSV

scroildoc a kP,o)

* PROJCLASSV a lavespot/slavespot(P);

master spot/

(dn(masterspot(P)),

coord(masterepot(P))+o);

projsize/projsize(P);

startpane/startpane(P);

panesize/panesize(P)]

The master of a projection can be moved with an off set.

.,o h"'"

h.

swap-projection SEQ [PROJCLASSV J x V I x JV
-. SEQ C PROJCLASSV

swap-projection (XP,m,n I e e dom(P) A n e dom(P))

*.. P 0 (m I-. P(n)) S (n F-, P(m)}

The strengths of two existing projections In the viewing projection list

are swapped by this function.

The following function deals with building projections.

createproj COORD x coordinate x COORD -t* PROJCLASSB

createproj B (cloc,size,ploc I size > (0,0))

PROJCLASSB [slavespot/ploc;

masterspot/cloc;

projsize/size]
4...

This function creates a building projection '-om its components.

A.
'S..t,

* 'S

*4'S

DISPLAY7.3A

Bass

Prior: DISPLAY7.3

- Comments:

* For the sake of simplicity. we rename the only non-derived portion

of the DISPLAY state component.

* State Component Definition:

DIPLY73

DISPLAY7.3A

start coordinate

sstaxt -coord (screenstart)

FILIE R7

State Definition:

F ILER7A

FILER? (FILING CABINET7.1 "-I FILING CABINET7.1A;

PROJSET7.2 "4 PROJSET7.2A;

DISPLAY6.3 P4 DISPLAY7.3A)

-sThe state space Is the previous state space as refined by this level .7-
of specification.

-4.

UMACHINE

Basis:

Prior: FILER7A I EDDOCIA
6_". J6
"t

Comments:
This specification recombines the decomposed system parts -- the

filer and the editor. Also at this level, many of the user required commands

can be Initially formulated. In order to facilitate the development of these

commands, a number of new components have been added to the state space.

Many of these new components are derived from the current state parts but

provide Information upon which decisions will be made within the commands.

Finally, this specification defines a subset of the tabletop document

in order to save machine resources. Typically, this partial tabletop Is defined

by a starting point (called the screen document offset. screendoff) and

a size parameter. This partial tabletop represents the first decision made

about how the screen appearance may be created and stored In our system.

It is hopelessly unrealistic to expect that the tabletop appearance would be

recomputed In toto after each state changing operation. However, it may

be economical to compute the appearance of an area larger than Just the

area seen by the user. The tabletop section ISlected for appearance

computation is called the screendoc. The following figure shows the

relationship among the various tabletop document components.

W1,)
K~tEO~ffTM~LEP

L SucCnwDI

((CUNW4 .TUr

(TAILIWIOTH, TAUIELINGTII)

The screen document must remain on the tabletop document. the screen

must remain on the screendoc and the cursor must remain on the

screen.

Requirements I Design Decisions:

[1] A partial tabletop appearance Is all that could be economically

computed when the user's display changes as a result of operations on the

state space. Defining this partial tabletop larger than the screen area may,

save resources so we leave the option open.

[21 Decisions about required user commands noted In the provisional User's

Manual are reflected here.

[31 No editing operations (except speck replacement) will be allowed on

document lines which are partially determined by building projections. This

eliminates some potentially undesirable effects caused by the Interaction of

projected and non-projected Information (eg. words disappearing under a

projection during an Insert.)

Auillary Definitions:

a.

blankline a SEQ ((backcolor)]

length (blankline) - maxdocwidth

blankmsg * SEQ ((backcolor)

length (blanknsg) - screenwidth

b.

(newdoc,blankdoc) G docname

A new document which has not yet been filed permanently and a

blank document will be required In the filing cabinet, so the appropriate names
p

are added to the abstract set of document names.

c.

blankproj a PROJCLASSV[slavespot/(1,2);

masterspot/(blankdoc, (1,1)) ;

projoize/

(maxdocwidth,maxdoclength);

startpane/(1,2),

caneaize/(O.O) I

.47-7

This projects a very large blank document to the upper left corner

of the tabletop. This document will serve as the backdrop for the creation

of a new document.

d.

nullproj *PROJCLASSV[slavespot/(l, 2);

masterspot/(newdoc, (1,1));

projaize/(1O0);

startpane/(l,2);

panesize/(O,O)]

This will Initialize the viewing projection for the creation of a new

document.

blankdoc *DOCUMENTCLASS(rows/maxdoclength;

colB/maxdocwidthI

(Vr 1 ..maxdoclerigth)

(Vc 1. .maxdocwidth)

(table (r)(c) - backcolor)

This Is the big blank document which will hide the tabletop from the

user as he creates a new document.

homeproj *PROJCLASSVC slavespot/(l,l);

masterspot/(homedoc, (1,1));

projsize/

(maxdocwidthlength(docdatal(homedoc)));

.. b startpane/(l,l);

panesize/(maxdocwidth, 1)

* To display the home document. this projection will be added to the

end of the viewing projection list.

emptydoc aDOCUMENTCLASS (table/<>

'p h.

CAMERA.

p.-l c COORD

*size coordinate

size > (0,0)
-

This schema represents the master area of a building projection.

none i docname....
edocname -docname U (none)

odwidth e V

sdlength e lV

These abstract values define the size of the screen document.

k.

oddit JV1 -. V1

oddit I
a + a MOD 2-1

Odd it turns even and odd line numbers Into odd line numbers.

The following functions are used to Insure that building projections
'Pwill not be disturbed by the editing commands.

check docname x EV x IV, x
SEQ [PROJCLASSB I .P (1V 1)

check a (xd,width,1ine,B)

*(c : dom (B) 1 (31 1..width

(i,line) c
aread (coord(slavespot(B(c))),projslize(b(c)))

A d_- dn(e1avespot(B(c))))

-- 7 --. -75

The function check defines the set of all building projections which

have a slave area that Includes some portion of the given line.

lineok docname x IV x JV1

SEQ [PROJCLASSB] - boolean

lineok a (,d,width,line,B)

check (d,width,lineB) - 0 ,.

Lineok Indicates that a document line is free of building projections

to it.

linesok docname x JV x I 1 x

SEQ [PROJCLASSB] - boolean

linesok a (kd,width,line,B)

check (d,width,line,B) n

check (d,width,line+l,B) - 0

This function determines If a line and its successor (if any) share i
a building projection slave.

areaok docname x IV x I x iV x

SEQ (PROJCLASSB] -. boolean

areaok a (,d,width,start1,stop1,B)

check (d,width,n,B) - 0

Finally, an entire area (sequence of lines) Is tested by this function

to see if It overlaps the slave area of any building projection.

M. -

innameline SEQ [PROJCLASSV] x IV x coordinate x

coordinate -4 boolean I
* innameline a XP,vpno,cursor ,sstart)

(vpno ' 0) A

(vpno * 0) - cursor+sstart-(l,l)

aread(lavespot(P(vpno))-(0,1), -

(x(proJsize(P(vpno)) , 1))

it will be Important at times to know if the cursor Is In the nameline

of a projection. This function will determine that Information.

n.

The deletion of a document may require that projections referencing

that document be deleted.

deletepv SEQ (PROJCLASSV I - docnane

-SEQ IPROJCLASSV I
delotepv a 0XS)

(kd)

(no ran (no) (t ran (5)

dn(masterspot(t)) 0'd)I
A (ViJ doni (no)) (3p,q :dom (S)

p > q A

ns(i) - S(p) A

ns(J) - Sq)
A length (nou)-

length (S J (PROJCLASSVI

dn(masterspot) 0 d))

With this function we can delete all viewing projections which have

the given document as the master document.

deletepb :SEQ [PROJCLASSB J .docnabe .

-SEQ (PROJCLASSB
deletepb a (AS)

(Xd)

(no Iran (no) -ft :ran (S) I
dn(masterspot(t)) 'd A

dn(slavespot(t)) 0'd)

A (Vi,J dom (no)) (3p,q :dom (S)

p > q A

ns(i) - S(p) A

ns(J) - S(q))

A length is)

lengt". (S J (PROJCLASSB

dn(masterspot) d A

dn(slavespot) # d)))

We have created a function which will delete building projections which

have the given document as either the master or slave.

0.

vprojreduce SEQ (RJLSV]x docname x NV

-SEQ [PROJCLASSV]

vprojreduce a OXS,d,n) .
(ns I (Yx 1. .length(S))

((dn(masterspot(S(xc))) d v

dn(masterspot(S(x))) -d A

y(coord(masterspot(S(x))) +

- - -y(proJsize(S(x)))-(1,1) 4 n

ns(x) -S(x))

A dn(masterspot(S(x))) - d A

y(coord(masterspot(S(x))) +

y(projsize(S(x)))-(1,1) > nl

ns(x)-

PROJCLASSV (slavespot/slavespot(S (x));

maaterspot/masterspot(S(X));

proJsize/(x(projsize(S(x))),

n+1-y(coord(masterspot(S(x)))));

startpane/startpane(S(x));

panes ize/

(x(panesize(S(x))),

min({y(panesize(S(x))),

n+1-y(coord(masterspot(S(x))))))]

In order to keep the master of a projection on Its master document

it may be necessary to decrease projection sizes If documents participating

In those projections are decreased In size. Of course the pane sizes mayAI

have to be reduced too. Those projections which do not Involve the reduced

* document or which still fit on the document even after the document Is

reduced will not be affected by this function.

The auxiliary definition for bproj reduce Is similar to the above

except that it tests and produces a PROJCLASSB.

tabletopdisplay is ABSTRACT

This represents the policy for moving the screen and for automatic

disclosure required to Insure that user commands do not force the cursor

out of the current window or off the screen. This policy may include the9

swapping of projection strengths to uncover parts of a window or movement

of the screen on the tabletop (screendoc).

*q.

barupdate 1V1 docname x DOCUNENTCLASS x V

-DOCUMENTCLASS

*barupdate *(Xline,d,H,long Iline < length(H))

bar length < long

iter(enter, ((long-barlength+9) DIV 10))

(H(line))

barlength > long H

where barlength *10 *(endline(line,H)-l)

enter SEQ (speck] .SEQ C speck]

enter (S) - (marker>) head (S)

-, The document lengths recorded In the home document must be

* updated each time a document's length Is changed. This function updates

these length bars as necessary.

insertel DOCL1ENTCLASS x 1V1 x coordinate

-DOCUMENTCLASS

insertel a (kd,1,c Iy(c) e dom(d) A

x(c) e dom(d(y(c))))

* paste (d,y(c),(l -. (blankline 0

(shift (1-1); (iter(tail,x(c)-1)(d(y(c)))))

P (l..cols(d))))

S (y(c) H.blankline S

iter(head, length(d(y(c)))-x(c)+I) (d(y(c)))

P (1. .cols(d)))

This function divides a document line Into two parts to create a new

line in the document. The remainder of the two new lines Is filled with the

* deleteel DOCU)ENTCLASS x IV1 x coordinate

-DOCUNENTCLASS

deleteel *(Xd,1,c Iy(c) c dom(d) A

x(c) e dom(d(y(c))) A

y(c) (length(d))

cut (d S (y(c) -
iter(head,length(d(y(c)))-x(c)+1) (d(y(c)))

*iter(tail,1-1)(d(y(c)+1)) P (1. .cols(d))),

Y(c),1)

With this function we can compress two document lines into one line

of the proper length.

State Definition:

UMACHINE

F ILER7A

.4 EDDOClA

ptoj COORD

cam .CAMERA

cursor coordinate

screendoff coordinate

-'insertmode boolean

arrowcommand: boolean

start coordinate

stop coordinate '

magline SEQ [speck]

* %%USEFUL DERIVED COMPONENTS

whichdoc edocname

show .(newdoc,homedoc,tabletop)

nodoc IV1

novproj IV
nobproj IV

*vpno Iv

bpno . v
svpno Pd

screendoc DOCUMENTCLASS

length (msgline) 4 screenwidth -1

III fixes blankdoc permanently in the filing cabinet.

A blankdoc e dom (docdatal)

%%although visible, the cursor can't be in a blankdoc

window.

dn (masterspot (z)) 0 blankdoc

%%the doc. to be edited is the current document.

whichdoc 0 none

docdatal (whichdoc) -doc

%%the blankdoc cannot be cluttered by projections.

(Yb ran (projbuild))

(dn (slavespot (b)) 'blankdoc)

size (cam) > (0,0)

%%the cursor stays on the screen.

cursor e area ((1,1), (screenwidth,screenlength))

%%the screendoc stays on the tabletop

screendoff e area ((1,1),

(tablewidth-sdwidth+1, tablelength-sdlength+l))

%%the screen stays on the screeridoc.

sstart e aread(screendoff,

* (sdwidth-screeriwidth+1, sdlength-screenlength+1))

nodoc -card (docdatal)

novproj - length (projview)

nobproj - length (projbuild)

* %%%the projection number of the window in which the
- **. ~ cursor is -- including the nameline of the window.

vpno 0O0

NOT (3n :vpno+l. .novproj I (cursor+sstart-(l,l)) e

aread(slavespot(zz)-(O,l) ,projsize(zz)+(O,l)))

A (cursor+sstart-(l,l)) e

aread(slavespot(z)-(O,l) ,projsize(z)+(O,l))

%%the building projection which is the last in the

projection network for the cursor location.

bpno 0 0

vpno ~0

A a - (n 1. .nobproj Iretv-vprojection(z)

(cursor+sstart-(l, 1))

-dom(retv-bprojection(projbuild(n))))

A a 0

A bpno -max(a)

%1% the second strongest viewing projection at the current

cursor location.

svpno vi 0 4--

vpno vi 0

A NOT(3n svpno+l. .vpno-l (cursor+sstart-(1,l)) e

aread(slavespot(zz)-(O,l) ,projsize(zz)+(0,1)))

A (cursor+sstart-(l,l)) e

aread(slavespot(projview(svpno))-(O,l),

projsize(projview(svpno))+(0,l))

%%this picks the current document for the cursor

location if that spot is not in the slave of a building

proj, or in a nameline.

whichdoc vi none s-

vpno vi 0 AI
NOT innameline(projview,vpno,cursor,sstart)A

areaok(whichdoc,cols(docdatal(whichdoc)),

y(coord(masterspot(z))),I
y(coord(masterspot(z)))+y(projsize(z))-l) A

retv-vproj ection (z)

(cursor+sstart-(1, 1))

-s - (whichdoc,position)

• .
77. -7.7

%i% a quick shorthand of what document the user is eeeing.

show - homedoc o-i*

projview(novproj) - homeproj A whichdoc - homedoc
show - newdoc 4-"'

newdoc e dom(docdatal)

show - tabletop oo

whichdoc ((homedocnewdoc)

rows (screendoc) - sdlength K* .

cols (screendoc) - sdwidth

where

z a projview (vpno)

zz a projview (n)

Operations:

The following operations will use this delta operation in the Initial

definition of user commands.

AUMACHINR
UMACH INE "'

UMACH INEI'" -

status' STATUS

status' - SUCCESS

X NOTICE: From this specification forward we will Institute a

shorthand convention of not explicitly showing state components which are

not changed In an operation. This convention can safely be applied because

there will not, at this or following levels of specfication. be any cases where

the result of an operation is unknown for some of the state components (which

was the previous meaning given to leaving state components unspecified.)

This new convention will greatly simplify the presentation of the operations

and highlight their effect on the state.

These user commands correspond with the appropriately named user

commands described In the provisional user's manual. Therefore, little or

no additional explication about WHAT they do Is given here. An explanation 9

of the preconditions or how they Insure a transition to a legal state is aftorded

where required. This explanation will also present a shorthand indication of

error conditions required to make them total functions. For example, in the

operation DCREATE (operation c.) is the precondition:

tt% there must be room for the new document.(ERROR13)

nodoc < maxdocno

which Indicates an error condition of the form:

NODOCROOM ?

OUMACHINE

status' STATUS

nodoc - maxdocno

status' - ERROR13

The error message associated with ERROR13 is listed at the end of the
specification. Of course. the total operation would be written In the form:

DCREATE a DCREATE v NODOCROOM? v ...

A few of the preconditions do not have an error status associated with them.

This signifies that the precondition will always be trivially met in the system

and therefore, cannot cause the operation to fail. This Is usually the result

of preconditions being specified as conditions for the operation Invocation

(ie. promoting the precondition to a higher level in the system, hierarchy)

or from a system structure which precludes the possibility of the precondition

not being met.

--I
* _ I

a.

ALJMACHINE

projview' - projvlew *homeproj

astart' - (1,1)

cursor' -(1)

screendoff' (1,1)

irsertmode' - false

arrowcoinmand' - false

nisgline' 'HOME--',nodoc,'DOCUMENTS IN THE FILING

CABINET'

show' -homedoc

b.

CLEAN

6UMACHINE

projview'

insertmode' false

arrowcommand' - false
msgline' blankmsg

DCREATR

AUMACH INE

%%there must be room for the new document. (ERROR13)

nodoc (maxdocno

%%there must be room for the new projections.(ERROR8)

novproj + 2 4 maxvproj

docdatal' docdatal

* (newdoc 1-+ emptydoc)

* (homedoc F-*

docdatal(homedoc)

(blankline,blankline>)

* %%%show the user a clean new sheet of paper and hide

details of the current tabletop.

projview' - projview * (blankproj,nullproj>

point' - point U (newdoc I.2 *nodoc + 1)

-4 astart' -(1,1)

cursor, 11

screendoff' -(1,1)

insertmode' false

arrowcommand' - false

msgline' - blankmsg

show' -newdoc

d.

* DFILEI

* AUMACH INE

docdatal' (docdatal\(newdoc)) U

'4(newname I--) docdatal (newdoc))

projview' delete (projview,novproj-1)

point' -(point\{newdoc)) u

(newname 1-* point (newdoc))

insertmode' -false

arrowcommand' - false

magline' - blankmsg

show* tabletop

M% select a legal but unused name.

where newname a r-(docname -dom (docdatal))

DTHROW

d docname

M% certain documents must remain permanently in the

filing cabinet.

d (homedoc, blankdoc)

docdatal' docdatal\(d) I

(homedoc -

delete(delete(docdatal(d) ,point(d)),

point(d)))

%%the corresponding projections must also be deleted.

projbuild' - deletepb (projbuild) (d)

projview' - deletepv (projview) (d)

point' - point\{d)

insertmode' - false

* arrowcommand' -false

9. msgline' blankasgI

.4 f.

PROJHER

AUMACHINE

%%the cursor must point to a window (ERRORi) but not a

window on the homedoc or the blankdoc.

* NOT irnameline(projview,vpno,cursor,sstart)

dn (masterspot (z)) j9 (homedoc,blankdoc)

proj' (dn(masterspot(z)),retv-vprojection(z)

* (cursor+sstart-(l, 1))

insertmode' false

arrowcommana' - false

msgline' blankmsg

where z aprojview (vpno)

CANHERR

ALJMACHINE

* %%%the cursor must be in a window. (ERRORi)

vpno 0 0

loc (cam') -(dn(masterspot(a)) ,retv-vprojection(a)

insetmod' -paneize(startpane))

size (cam') - aeie(a)

insrtmdel- false

arrowcommand' - false

magline' - blankmsg

where a Bprojview (vpno)

IA

h..

PROJCREATR

* AUMACH INE

%%there must be room for a new building.

projection. (ERRORS) fa

nobproj (maxbproj

%%both the camera area (ERRORl4) and the projector area

(ERRORl5) must still exist.

aread(coord(proj),size(cam)) S

area((1,1), (cols(a) ,rows(a)))

aread(coord("loc(cam)),size(cam)) c

area((1,1), (cols(b) ,rows(b)))

projbuild' -projbuild U

(nobproj+lI-

createproj (lc (cam) ,size (cam),o))

insertmode' false

arrowcoinmand' - false

msgline' -blankmsg

wherej

a a docdatal (dn (proj))

b a docdatal (dn (loc (cam)))

PRJRM

AUA.IN

thsslce so onstotesaeofabidn

. 4cto.(ROR6

bpn 0.

proJbuild' -delete(projbuild,bpno)

insertiuode' -false

arrowcommand' - false

4.4msgline' -blankmsg

PROJSWAP

AUMACHINE

It% two viewing projection slaves do exist at this point

on the tabletop.(ERRORl7)

vpno 0 0

svpno 0 0

projview' - swap-projection (projview,vpno,svpno)

insertmode' - false

arrowcommand' - false

msgline' -blankmsg

REMOVEW INDW_______________ _____

AUMACH INE

%%must be in a window. (ERRORl)

vpno 0 0'

projview' delete (projview,vpno)

insertmodel - false

arrowconimand' - false

msgline' blankcmsg

REWOVESG

I AUXACHINE

'%A must be in a window. (ERRORi)

vpno 0 0

projviewl -rje S
(vpno I-+ rerovesg(projview(vpno)))

insertmode' - false

arrowcommand' - false

msglin& - blankmsg

M.

CREATESG

a. AUMACH INK

%%must be in a window. (ERRORi)

vpno, * 0

%%the designated pane area must be within the

window(ERROR4) if the entire window is not stained glass.

area(sstart,cursor+sstart-(l,l)) S

aread(slavespot(a) ,projsize(a)) v

innameline(projview,vpno,o, sstart)

Utthe window currently does not have a pane.(ERROR7)

panesize (a) - (0,0)

NOT innameline(projview,vpno,cursor,sstart)

projview' - projview S

(vpno F

createsg (a,sstart,cursor+sstart-(1l1)))

C. ~ ~ ~ ~ 7 a;,,C . C C C -. C*

innameline(projview,vpno,cursor,sstaxt)

projview' - projviewS

(vpno -

ci eateag

* (a,slaves(a),slaves(a)+projsize(a)-(l,l)))

insertmode' -false

arrowcommand' -false

msgline' blankmsg

where a aprojview (vpno)

n.

MOVEWINDOW_____________________

AUMACH INE

offset .coordinate

* %%% must be in a window. (ERRORi)

vpno 0 0

%% after a move the window must still be on the tabletop

with room for the nameline.(ERROR5)

aread(slavespot(a)+offset,projsize(a))

aread((l,2), (tablewidth,tablelength))

%the policy on disclosure affeCt3 what the user sees asI

a result of this operation.

tabletopdisplay(cursor,sstart,offset,screendoff,bvpno)

insertmode' false

arrowcommand' - true

msgline' 'MOVE WINDOW--USE ARROWS'

where a a projview (vpno)

b a projview I

(vpno "- movewindow (a)(offset))

6..

0.

MOVESG

AUMACH INE

off set coordinate

%%must be in a window. (ERRORi)

vpno ii 0

%%the window has a stained glass.(ERROR2)

panesize (a) ;k (1,1)

%%the location of the stained glass after the move must

be in the window. (ERROR4)

aread(startpane(a)+offset,panesize(a)) c

aread(slavespot(a) ,projsize(a))

projview' projview S

{vpno F--) movesg (a) (of fset))

insertmode' - false

* arrowcommand' - true

msgline' 'MOVE STAINED GLASS--USE ARROWS'

where a a projview (vpno)

SI ZEWINDOW___________________ ~

AUMACHINE

* down,

up,
left,

right, INT

%%must be in window. (ERRORI)

vpno 0 0

%%master stays on document. (ERROR3)

aread(coord(masterspot(zz)),projsize(zz))

area((1,1), (cols(docdatal(dn(masterspot(zz)))),

rows(docdatal(dn(masterspot(zz)))))

%%window stays on the tabletop with room for the

* nameline. (ERROR5)
aread(slavespot(zz),projsize(zz))

aread((1,2), (tablewidth,tablelength))

%%the nameline remains visible. (ERROR18)

projsize (zz) > (1,0)

%%the policy on disclosure affects what the user sees as

* a result of this operation if the offset is not (0,0).

tabletopdisplay(sstart,cursor, (a,b),screendoff,z,vpno)

insertmode' false

arrowcommand - true

msgline' 'CHANGE WINDOW SIZE--USE ARROWS'

%%here we define the offset to be used to move the

* cursor -- no movement is done unless required to keep

cursor on new window or nameline.

* where c a cursor+sstart-(l,1)-

slavespot(projview(vpno)) + (0,1)

d slavespot(projview(vpno)) + T
projsize(projview(vpno)) -(1,1)

(cursor+sstart-(l, 1))

left + x(c) <0 a -- (left + x(c))

right + x(d) (0 = a - right + x(d)

left + X(c) > 0 A right + x(d) > 0 a -0

up + y(c) < 0 b - -(up + y(c))

down + y(d) < 0 b - down + y(d)

Up + y(c) > 0 A down + y(d) > 0 b -b 0

z -projview S (vpno -
sizewiridow (projview(vpno))(down,up,right,left))

22 -z (vpno)

This window sizing operation can be used for both expansion and

* retraction.

-a-

SIZESG

AUMACH INE

up,

down,

left,

right INT

*%must be in a window. (ERRORI)

vpno 0

%%the revised stained glass must stay on the

window. (ERROR4)

aread(startpane(z),panesize(z)) e

aread(slavespot(z),projsize(z))

%%% the window has a stained glass pane. (ERROR2)

panesize (projview (vpno)) >(1,1)

%%the resized pane must still be visible. (ERRORl9) f
panesize(z)>(1)

projview - projview S (vpno -2
sizesg (projview(vpno))(up,down,left,right))

insertmode' - false

arrowcommand' - true 7
magline' - 'CHANGE STAINED GLASS SIZE--USE ARROWS'

where z - projview' (vpno)

r.

OFF HOME

AUMACH INE

projview' delete (projview,novproj)

astart' - (1,1)

cursor, -(1)

A screendoff' - (1,1)

insertmodel - false

arrowcommand' - false

- . msgliiel - blankcmsg

show' -tabletop

If the user is viewing the home document and wishes to return to

the normal tabletop picture he will push the HOME key and activate this

operation.

S.

CHOOSE

AKJMACH INE

M% the user must be viewing the homedoc to select this

operation.

show -homedoc

.4 %%we make the decision to preclude the user selectedI

windows from displaying the homedoc.

a 0 honiedoc

projviewl delete (projview,novproj) I
PROJCLAASSV Cslavespot/(l,2)x

masterspot/(a, (1,1))

proj size/

(cois~a) ,rows(a))

startpane/ (1,2)

4'panesize/(O,O)] >

start' -(1,1)

cursor', 11

screendoff' -(1,1)

insertmode' false

arrowcommand' - false

msglinel - blankmsg

show' - tabletop

where a apoint' (oddit (y (cursor+sstart-(1,l))))

This operation will create a full document sized projection from the

document the user has chosen.

SCROMI

AUMACH INE

offset coordinate

%%must be in a window. (ERRORi)

%%the master of the window creating projection must

still be on the master document after this

command. (ERROR3)

aread(coord(masterspot(a))+offset,projsize(a)) c

* area((1,1), (cols(b) ,rows(b)))

projview' projview 8

(vpno "- scrolldoc (a,offset))

insertmode' - false

arrowcommand' - true

magline' 'SCROLL OR ADJUST--USE ARROWS'

where a a projview (vpno)

b a docdatal (dn (masterspot (a)))2

INSERTMODE

AUMACHINE9

insertmode' true

arrowcommand' - false

msgline' 'INSERTING'

V.

* INSERT

SAU14ACH I NE

s . speck

%%must be in a window. (ERRORi)

vpno 0 0

%%must be on a line free of building projection slaves

or else in the nameline.(ERROR6)

(whichdoc - none)

innameline(projview,vpno,cursor,sstart)

(whichdoc 0 none) ==P

lineok(whichdoc,cols(docdatal(whichdoc)),

y(position) ,projbuild)

Utthere must be room within the left margin set by

window for inserted character.(ERRORl2)

endline (y(c),docdatal(d)) 4

x(coord(masterspot(a)) + projsize(a) -(1,1))

%%if the cursor is not at margin (right edge of window)

* then this operation may roquire disclosure.

x(cursor + satart - (1,1)) <

x(coord(slavespot(a)) + projsize(a) -(1,1))

tabletopdisplay(sstart,cursor, (1,0),

scr sendoft ,projview, vpno)

docdatall docdatal S

(d I.inserts (docdatal(d),c,s)

r(l..cols(docdata(d))))

arrowcommand' -false

where a aprojview (vpno)

b *dn (masterspot (a))

whichdoc 0 none c a position A d awhichdoc

whichdoc - none c a (x(retv-vprojection(a)

(cursor+sstart-(l,l))),y(point(b)))

A d a homedoc

W.

* DELETE

AUMACH INE

%must be in a window. (ERRORi)I

%%must be on a line free of building projection slaves

*or else in the nameline (ERROR6) (but not at end of

nameline(ERROR2O)).

(whichdoc -none)

innameline(projview,vpno,cursor,sstart)I

A x(c) (endline (y(c),docdatal(d))

* %%%combining two lines cannot disrupt a building

projection. (ERROR6) f
lineok(whichdoc,cols(docdatal(whichdoc)),

y(position) ,projbuild)
M% there must be something in the next line. (ERROR2O)

A x(c) > endline (y(c),%;ocdatal(d))

(rows(docdatal(d)) y(c) A

%%the resultant line must fit in the margins.(ERRORl2)

x(c)+endline(y(c)+l,docdatal(d))-

x(coord(masterspot(a))) 4

x(coord(masterspot(a))+projsize(a)-(l,l))

%%character delete.

x(c) (endline (y(c),docdatal(d))

docdatal' - docdatal * (d -4

deletes(docdatal(d) ,c) < backcolor>)) J
%%carriage return deletion changes document size -- may

also affect projections and length indicator.

x(c) > endline (y(c),docdatal(d)):2

(docdatal' docdatal * (d -

deleteel(docdatal(d) ,c)) *(homedoc

F-* barupdate(point(d)+l,d,

docdatal(homedoc),

length(docdatal (d)))) A

projbuild'-

bprojreduce(projbuild,d,rows(docdatal' (d)) A

projview'

vprojreduce(projview,d,rows(docdatal' (d)))

insertmode' - false

arrowcommand' - false

msgline' - blankmsg

where a a projview (vpno)

b a dn (masterspot (a))

*whichdoc 0 none c a position A d awhichdoc

whichdoc -none zc a (x(retv-vprojection(a)

(cursor+sstart-(l,O))) ,point(b))

A d *homedoc

CUT

AUMACH INE

%%must be in a window (not in nameline).(ERRORl)

vpno 0 0 -

NOT innameline(projview,vpho,cursor,sstart)

%%the window has a stained glass. (ERROR2)

panesize (z) > (1,1)

%%the stained glass selected lines are not touched by a

building projection slave. (ERROR6)

areaok (whichdoc,cols(docdatal(whichdoc)) ,a,

a+y(panesize(z))-l,projbuild)

* %%changes document size -- may affect projections and

* length indicator.

docdatal - docdatal I

(whichdoc -

cut(docdatal(whichdoc) ,a-l,

y(panesize(z)))) I

(homedoc F-*

barupdate(point(whichdoc) +1,

whichdoc, docdatal (homedoc),

length(docdatal' (whichdoc))))

projbuild' -bprojreduce(projbuild,whichdoc,

tows(docdatal' (whichdoc)))

projview' vprojreduce(projviewwhichdoc,

rows(docdatal (whichdoc)))

* insertmode' - false

arrowcommand - false

msgline' blankmrsg

where z a projview (vpno)

a a y(retv-vprojection (z) (startpane(z)))

ALTER
.0

AUMACH INE

a . speck

%%must be in a window. (ERRORi)

vpno 0 0

docdatal - docdatal *(d -

* alter (docdatal(d),c,s)

%%if the cursor is not at the margin (edge of the

window) then disclosure may be required.

x(cursor+sstart-(1,1)) <

x(coord(slavespot(a))+projsize(a)-(l,l) -

tabletopdisplay (sstart,cursor, (1,0),

screendoff ,projview,vpno)

arrowcommand' = false

k msglinel blankmsg

where a a projview (vpno)

b a dn (masterspot (a))

whichdoc 0 none c a position A d awhichdoc

whichdoc -none c a (x(retv-vprojection(a)

(cursor+sstart-(1,O))) ,point(b))

A d ahomedoc

This operation replaces one speck with another.

NWLIN'

%%in winidow but not in nameline (ERRORl) and line free

of building projection slaves.(ERROR6)

NOT innameline(projview,vpno, sursor, sstart)

vpno 9' 0

lineok (whichdoc,position,docdatal(whichdoc))

%%there must be room in the document. (ERRORli)

* rows (docdatal(whichdoc)) <maxdoclength

%%the new line must fit within the margins

given. (ERROR12)

* endline(y(position),docdatal(whichdoc))-

x (position) 4

x (sizeproj (projview(vpno))

*%%the change in the document length may affect the

length indicator.

docdatal' - docdatal 8 {whichdoc j~

insertel (docdatal(whichdoc) ,position)) S

(homedoc F-* bar length (point (whichdoc) +1,

wh ichdoc, docdatal (homedoc),

length(docdatal' (whichdoc))))

arrowcommand' -false

%%disclosure may affect the picture seen by the user.

tabletopdisplay (astart, cursor,

(x(slavespot(z)) - cursor-sstart+(l,l)),l),

screendoff, a, vpno)

where z a projview (vpno)I

y(slavespot(z)) >y(cursor+sstart-(l,l))

a - projview

y(slavespot(z)) -y(cursor+sstart-(l,l))

a -projset S (vpno F-* sizewindow(z)(O,l,O,O))

This operation creates two lines from one when given a carriage

return.

7. A i T v -., .A '. -a 7*. . T - t - - -

REVERSE _

Basis:

Prior: UMACHINE

* Comments:

To allow certain of the required user commands to be reversible.

" we must save the previous state description. The easiest manner in which

to accomplish this is simply to have two versions of the state, the current

version and the previous version.

State Definition:

REVERSR

UMACH INE

UMACHINE

The components of the old version of the state are denoted by the

component name with the # superscript affixed.

Operations:

AREVERSR

'REVERSE

REVERSE'

status' STATUS

status' - SUCCESS

a.

UNDO
-0

AREVERSE

eUMACHINE° - eUMACHINE'

eUMACHINE 13 .

.1 UNDO Is not reversible; therefore, we don't care what happens to 'j

, the old state components once they are used to reverse the effects of a

command.

b.

PASTrW

AREVERSE

I%% there must be something to paste
panesize (z) > (i,i)-''

%%% the user must have selected a receiving location

within a spot where no building projection has a slave.

vpno 0 0

NOT nameline(projviewvpno,cursor,sstart)

linesok (whichdoc,cols(docdatal(whichdoc)),

y(position),projbuild)

%%% the resulting document must not be too long.

rows(docdatal(whichdoc)) + y(panesize(z)) <

maxdoclength

%%% both documents must be the same width.

cole (docdatal (whichdoc)) - cols (c)
S.

,". '- .-

%%update the document and its length entry in hoinedoc.

docdatal' docdatal I

{whichdoc I-. paste (docdatal (whichdoc), 01
y(position),pastedoc)) I

(homedoc I-* barupdate (point (whichdoc) +1,

whichdoc, docdatal (homedoc),

length(docdatal' (whichdoc))) I

%%return the user to the place from which the material

was copied.

~1. sstart' - sstart

cursor' - cursorS
screendoff' - screendoff#

insertmode' -- false

msgline' - blankmsg

where z a projView# (vpno)

c a docdatalp (dn(masterspot(z)))

%%The document to be pasted in is created from the donor

area by determining the appearance of each point in the

area.

%%This means that shared information and the information

basic to the donor document is pasted.

pastedoc :ARRAY (speck]
length (pastedoc) -y (panesize (z))

(Va 1 ..length(pastedoc))

(length (pastedoc (a)) - cols(c))

(Vx 1. .cols(c)) (Wy : ..length(pastedoc))

(pastedoc (y) (x)-

pr jview' ((F ILE-APPEARANCEFILER 7A;
PROJECTED-APPEARANCE FIL ER7A)

a (c, (x, y(c(masterspot(z)))+y-l))))

The paste command uses the previous state description to define

where the material to be pasted Is located and where to return the user

after the paste command terminates. Notice that since this command pastes

In the Information as It appears to the user (ie. including copies of shared

Information). there Is the prossibility of attemping to paste undefined specks.

C.

CREATEWI NDOW____________________

AREVERSE

%%The following represents the decision to disallow a

user defined window from showing the home document.

a 0 homedoc

%%the document must not be too small to fill the entire

window. (ERRORlO)

docdata.2 (a) > y(stop-start) + I

projview' - delete (projview,novproj)

< PROJCLASSV(slavespot/start;

masterspot/(a, (l,b));

projsize/(stop-start+(l,l));

star tpane/start;

panesize/(O,O)]>

* sstart' - sstart

-' cursor' - cursors

screendoff' - screendoff~

insertmode' - false

arrowcommand' - false

msglirxe' - blankmsg

show' -tabletop

where a a point-' (oddit (y (cursor+sstart-(l,l))))

10 *(x(position)-l) + y(stop-start) +1

> docdata2(a)

b - 10 *x(position)-l) + 1

10 *(x(position)-l) + y(stop-start) +1

< docdata2(a)

'4b -docdata.2(a) - y(stop-start)

This operation creates a new window In the location directed by the
user. The master of the window Is selected by the user at the home
document. After this operation the display Is returned to the tabletop area
which shows the new window.

7. 7:7. 7-7

MACHINE.

Basis:
* Prior: REVERSE

. :-

Comments:

At this level of specification we can Introduce the system hardware

representation Into our machine state. The seiected target machine Is the

151 11-03 with printer (or print file), floppy disk, and KGM PT700 character

display screen. This hardware will accommodate all of the prior assumptions

we have made about the underlying machine (eg. reverse video, textual display

screen. etc.) Because -of the availability of disk storage, we will specify that

copies of the filing cabinet documents are on secondary storage. That will

allow the option of removing the now derived documents from main store.

It Is unlikely that the machine will be big enough to permit the filing cabinet

to be completely main storage resident.

Requirements IDesign Decisions:

[1f All documents are filled with characters only.

12] The hardware selected Is the IS1 11-03 with disk, printer, and textual

display terminal. A standard keyboard with directional keys and 28 definable

function keys provide the user Input.

Auxiliary Definitions:

101
.-.- ,

*a. fname is ABSTRACT

Disk filename formats are left unspecified.

b. record is ABSTRACT

The organization of data on the disk Is left unspecified. We will not

attempt to deine what constitutes a record but will assume that whatever

we specify to go on the disk will satisfy the criteria for the set of records.

C.

character a (a,b,c,d,e,f,g,h,i,j,k,1,m,

n~o~p~q r ,s ,tuPvrwrx1y~z,

A,B,C,D,E,F,G,H, I,J,K,L,M,

N,O,P,Q,R,S,T,U,V,W,X,Y,Z,

g,(,-, tp\,1,2,3,4,5,6,7,8,9,O)

U (sp)

This Is the standard visible ASCII character set which will be used

to create the documents.

d.

*speck a character U

revvideo Q character D

Specks are visible on the screen as well as Including the character

set used to create documents. Therefore, the specks must Include all

characters In reverse video.

e.

docdisk e docname -. fnarne

docdisk e docnaxne -. f name

ran (docdisk) nl ran (docdisko) -0

These two functions turn document names Into their corresponding

disk file names. The decorated function will be used to give unique disk

file names to documents of the previous state.

DISKC

fname -*SEQ (recordJ

This schema allows us to describe the system disk very abstractly.

Stale Definition:

MACH INEt

921

M% secondary store

disk DISK

%%printer

printer SEQ (line SEQ [character]]

%%main storage

11] REVERSE (DOCUMENTCLASS~speck] I-

DOCUMENTCLASS (character])

docdata2 docname J V

%%the lengths of the documents will be a useful derived

component to define.

dom(docdatal) -dom(docdata2)

*(Vd dom(docdatal))

(docdata2(d) -rows(docdatal(d))

%%both the old and the current documents are on the disk

and must have unique disk names.

(Vd dom (docdatal"))

(disk (docdisko(d)) -docdatal (d))

(Vd dom (docdatal))

(disk (docdisk (d)) -docdatal (d)) 40

Operations:

a.

PRINT

AMACHINEl

pr inter' pr inter 'P

insertmode' false

* arrowcommand' - false

msgline' blankmsg

where

%%Print the whole document as it exists in the filing

cabinet.

(show - homedoc) P -docdatal(a)

* aa point-' (oddit (y (cursor+sstart-(l,l))))

* %%%Print the screen.

(show homedoc A

NOT innameline(projview,vpno,cursor,sstart))

(P e ARRAY [character) A
length(P) -screenlength A

(Va, 1.. screenlength)

(length(P(a)) - screenwidth) A

(Vx 1. .screenwidth)(Vy l..screenlength)

(P(y)(x) -screendocL. * ~ (y(sstart)+y-y(screendoc))

(x(sstart)+x-x(screendoc))))

-At

%%Print the entire window.

(show 0 homedoc A

irnameline(projview,vpno,cursor,sstart))

- -i.'(P e ARRAY (character] A

* *length(P) -y (projeize (Z)) A

(Va 1 ..length(P))

(length(P(a)) - x (projsize (Z))) A

(Vx :1. .x(projsize(z)))(Vy 1 ..length(P))

(P(y)(x) -prjviewl

0 ((F ILE-APPEARANCE FILER7A;

PROJECTED-APPEARAN CEFLRA

(dn(masterspot(z),

c(masterspot(z))-(1,1)))))

where z aprojview (vpno)

The PRINT command prints the entire stored document. the screen.

or the window as determined by the location of the cursor.

MACHINEIA

Basis:

Prior: MACHINE 1

Comments:

Only some of the user commands change documents In the filing

cabinet and even these commands change only a few documents. It is

* unnecessary, therefore, to save the entire set of documents that were in the

old filing cabinet just In case the user changes his mind with a reverse

command. This refinement utilizes that fact to redefine the disk in a more

economic fashion by not keeping duplicates of unchanged documents.

State Definition:

MACH INEIA

MACHINE1

docnamel edocname

docname2 edocname

docname3 edocname

diskl DISK

diskl - disk P a

docnamel - none =* docname2 - none

docname2 - none =:b docname3 - none

where a a docdisk a dom(point) 0 U

docdisk 0 (docnamel,docname2,docname3)- (none) 0

The most a user command could change Is three documents;

therefore, we add three document name components to the state to hold the

names of the affected documents. The new disk component will hold only

the current documents and up to three old documents required in case of

a command reversal.

* OperaUons:

MACHINEIA

MACH INElA

MACH INElA'

status' STATUS

4 status' -SUCCESS

REV

AMACH INElA

UNDO

docnaiel' none

docname2' none

docname3' none

The reverse removes the backup documents after making them the

current documents.

b.

DCREATE

* DCEATREVERSE

docnanel' - homedoc

docname2' - none

docname3' none

The homedoc has been changed In preparation for the creation of
a new document.

DF IT .

AMACH INElA

DF ILE,EES

docnainel' - homedoc

docname2' - newdoc

docname3 - none

Filing a document has deleted the unfinished newdoc and changed

the homedoc.

d.

DTHRO

AMCH INElA

DTHROWREVERSE

docnamel' homedoc

docnaxne2' d

docnane3 - none-

Throwing a document away affects the homedoc and the document
removed. 4

PASTE

AMACH INElA

* PASTER E

docnamell - whichdoc

docnazne2l - homedoc

docnazne3' - none

Pasting changes the document pasted Into and may change document
legh nonain

f.

CUT

6MACH INElA

CUREVERSE

docnazuel' whichdoc

docnameV - homedoc

docname3' none

In cutting part out of a document. the length of the document may

- change.

AMACH INElA

PASTE EES;CUTRES

docnamell - whichdoc

docnane2l - whichdoc

docname3' - none

This operation changes the documents cut from and pasted to. as

weli as the homedoc since the document lengths may have changed.

MACHINE2

Basis:

Prior: MACHINEA

Comments:
In this final level, we have completely recomposed the system

components and have developed a total system (le. it will now process all

possible (legal and illegal) user commands). We also developed here the

system control structure which Interfaces with the user and controls the activity

v *of the system. The three standard system phases -- initialization, operation.

and termination -- have been defined.

The provisional user's manual was taken as final authority on the

functioning of the system In general and on the operation of the user

commands. Other decisions reflected In this level of specification Include

the final determination of document paper size and the selection of key inputs

over a menu system. The state space has been updated to facilitate system

control by maintaining a short history of key Inputs.

Requirements / Design Decisions:

S1I All document papers will be exactly the same as the the width of the

screen to simplify document manipulation. Of course, documents can be made

at any width up to the document paper width. Selecting a document size

larger than the screen width would have made document viewing very difficult

on a fixed width screen with doubtful Improvement In the system usefulness

or generality.

2 * 121 Key Inputs rather than menu selection will be used.

[3] The decisions about overall system function and user command

functions are as Indicated In the provisional user's manual unless a change

Is noted at the appropriate point In the specification.

Auxiliary Definitions:

a.

arrowkeys a (left, right, up, down, tab)

These are the keys which move the cursor or give directional

Information to the commands which require it.

b.

legalkeys aarrowkeys U

character U (e1) U

(khome, kdthrow, kdfile, kdcreate, kinsert,

)cdelete, kpaste, kcut, kpnc, kprint, kwremove,

ksgremove, kwcreate, ksgcreate, kwmove,

* ksgmove, kwretract, ksgretract, kwexpand,

ksgexpand, kscroll, kswap, kchoose, kpcreate,

kpremove, kcam, kproj, kclean, kquit,

* krev, kaccept)

legalkeys s possiblekeys

Here we have defined the subset of possible keys which are valid

In this system.

.7..

screenkeys *legalkeys -(kdfile, kchoose)

Screenkeys defines the set of user keys which can be selected

when the user display shows the tabletop.

d.

newkeys alegalkeys -(khoine, Jdcreate, kscroll, kswap,

kchoose, kpcreate, kpremove, kcam,

kproj, kclean, kguit, kwremove,

kwcreate, kwmove)

*These keys are valid when the user Is creating a new document for

the filing cabinet.

homekeys aarrowkeys U (kdthrow, kprint, kchoose, kclean,

khome, kquit, krev)

This Is the set of valid keys available If the screen Is displaying the

home document.

r.O

reversekeys a legalkeys - characters - arrowkeys

- (el, kinsert, kdelete, kprint, kquit,

krev, kaccept)

Some commands are not reversible. The set which are reversible

is defined by reversekeys.

g. maxdocwidth - 80

screenlength- 23

screenwidth - 80

backcolor - sp

marker -

These system constants can now be defined based on known desires . -

of the user or limitations of the selected hardware.

h.

screendisplay is ABSTRACT.

The policy for arrow movement of the cursor is left undefined at this

point but will specify how the cursor, screen, and screen document react

to movement of the cursor on the screen.

MACHINE2

MACHINEIA (DOCUMENTCLASS P

DOCUMENTCLASS (cols- maxdocwidth))
newkey possiblekeys

oldkey possiblekeys

The state definition Is updated to Include the most recent previous

reversible user command and the current user command. The old key will

be useful for reversing and for operations which are dependent upon the

history of the session. Now the state will also require all documents to be

the same width as the screen. .J

Operations:

a.

SESSI10

ADISK

eDISK' -INITIALIZE (eDISK);

EXECUTE;

TERMINATE

A session of the windowing screen editor Includes the standard three

parts for a non-continuous system. The environment which exists between

the sessions of the sygtem Is modeled by the DISK.

* b.

INITIALI ZE

d .DISK

mg MACHINE2

projbuild' -d ('projbuild')

projiview' d ('projviewl)

.1point' - d ('point')

sstart' - first (d ('view'))

proj' fifth (d ('view'))

cam' -fourth (d ('view'))

* -cursor' -second (d ('view'))

screendoff' - third (d ('view'))

insertmode' - false

arrowcommand' -false

start' 1 3

stop', 0

msgline' blankmsg

GUMACHINES' 130

printer' -0

docnamel' - none

docname2' - none

docname3' - none

newkey' -0

oldkey' -krev

* The Initial state representation Is generally the same as the final state

representation of the previous session. However, no history (previous user

* commands) Is remembered from the last session.

C.

EXECUTE DISPLAYEDMACHINE 2 ; US ER;

LOOP (OPERATE; DISPLAYEDMCHINE 2 ; USER)

The execution of the user's commands Includes the display of the

screen to the user and the Input of user command desires.

d.

* USER

OMACHINE1A

newkey,
newkey',

oldkey,

oldkey' possiblekeys

status' STATUS

show -tabletop newkey' - (screenkeys)

-show - newdoc newkey' - T(newkeys)

*show - hoinedoc :newkey' 7 (homekeys)

oldkey e {kpastekpnc)

* newjcey' - 7(arrowkeys U (kaccept))

oldkey -kwcreate NTarwomn

* newlcey' T ((kquit,krev,kchoose) u

arrowkeys)

oldkey' - oldkey

status' - SUCCESS

Only certain Input commands are allowed by the system, depending

upon what Is being displayed to the user at the time of command Input.

BADKEY?

OMACHINE1A

newkey, 7*

* newkey',

oldkey,

oldkey' possiblekeys

status' STATUS

show -tabletop

newkey' -T(possiblekeys-screenkeys)

show -newdoc -

newkey' - (possiblekeys-newkeys)

show -hoinekey

newkey' - T(poss iblekeys-homekeys)

oldkey e (kpaste,kpnc)

newkey' -r(possiblekeys-arrowkeys

-(kaccept))

oldkey -kwcreatearwcmndf

newkey' -r(possiblekeys- '
* (kquit,krev,kchoose)-arrowkeys)

oldkey' -oldkey

status' -ERROR23

.4 This error condition traps keys which are not allowed due to the

current condition of the display. Consequently, the total user can be modeled

by the following:

USER aLoop (BADKEY?); USER

e.

OPERATE B (KEYUPDATE V I(MACHINE2 I newkey 0 kquit));

COMMAND -

The operation of the user Input command Is done In two parts --

the updating of information required for command reversing (if new command

is reversible) and the actual command execution.

i ,f.

KEYUPDAT,

AMACH INEIA

newkey,

7. newkey',

oldkey,

oldkey' possiblekeys

newkey e reversekey

eUMACHINE ' - GUMACHINE

oldkey' - newkey

docnamel' - none

docname2'- none

docname3' - none

diskl' -diskl P ran (docdisk)

Each time a new reversible key is accepted as a potentially legal

command, the current state of the system must be saved so that the system

can be returned to that state If a reverse is directed. If the Input command
Is not reversible, then the state before the most recent previous reversible

command (if any) is kept.

.%N

g.

AMACHINE1A

-, newkey,

newkey',

oldkey,

oldkey' pose iblekeys

status' STATUS

newkey # kquit

(newkey -krev) (oldkey - krev)

(newkey -khome A -show -tabletop) HOMEMACINEIA

(newkey -khome A show -homedoc) OFFHOMEINl

(newkey -kdthrow A show - newdoc)

,, -. DTHROWQINl [d/newdoc];

REMOVEW INDOWMA,~A HOMEMAHNl

(riewkey -kdthrow A show - homedoc)

DTHROWMACINEIA [d/a]

(newkey - kdthrow A show -tabletop)

DTHROWMCHNl (d/dn(masterspot(projview(vpno)))]

'.4 (newkey -kdfile) DFILEAINA
.9HIEI

*(newkey -kdcreate) DCEATEMAINElA

'a'(newkey -kinsert) INSERTMODE MACHINEIA

(newkey -kdelete) DELTEAHN~

(newkey -kpaste) PASTEIT

(nowkey -kcut) -CUTMAINl

(newkey -kpnc) :PASTEIT

-~~ (newkey -kprint) PRINTAHN1

(newkey - Jwremove) R EMOVEWINDOWMQ.IINEIA

(newkey - Icgremove) REM0 ESG~IINl

(riewkey -kwcreate) WCREATE; HOME~OINl

(newkey -ksgcreate) CREATESG ACINVlA

(newkey -kwmove)

VOEWNOWMCHINElA [offSet/(0 0)]

(newkey -ksgmove)

* I OVESMACINE1A [offset/(OO)]

(newkey -kwretract)

SIZEWDWAHNl (up/O; down/0; let t/O; right/O]

(newkey -ksgretract)

SIZESGMACHINEIA (up/0; down/0; lett/O; right/0]

* (newkey - kwexpand)

S IZEW INDOWMACHEI (up/0; dowri/O; left/0; right/0]

(newkey - ksgexpand)

SIZESG,~Nl (up/0; down/O; let t/O; right/O]

(newkey -kocroll) zmm SCOL MA(NI offset/(G,0)j

(newkey - kchoose A oldkey -kwcreate) CREATEWINDOW

(newkey - kchoose A oldkey 0 kwcreate) CHOOSEAHNl

(newkey -kpcreate) PROJCREATE~QNl

(newkey -kpremove) PROJREMOVECHNl

(newkey -kswap) PROJSWAPCHNI

(newkey -kcam) CAMHEREMAHNl

(newkey -kproj) PROJHEREAHNl

(newkey -kclean) CLEANMCIlA HOMEHIE~

(newkey - kreV A ol1dkey e reversekey) REV, MHINEIA

(newkey - kaccept) :ACCEPT

(newkey e arrowkeys) CURSORMOVE

(newkey echaracter) A insertmode

INSERT ~,CIE[char/newkey]

(newkey e character) A NOT insertmode ==P

ALTERQQINl (char/newkeyJ

(newkey -el) -~NEWLINE ACINEIA

*where a apoint1 (oddit (y (curaor+sstart-(1,1))))

* -. When the command from the user Is other than to terminate the

session, this operation will attend to the command. The only error condition

not handled by the Individual key operations Is the case where there Is nothing

to reverse and the user has directed that a reverse be done. This Is taken

care of by the following error condition:

NOTH INGTORE VERSE?

AMACH INElA

newkey,

newkey',

oldkey,

oldkey' possiblekeys

status' STATUS

newkey -)rev

*oldkey d reversekey

status' -ERROR9

h.

TERMINATE

m. MACHINEIA

newkey poss iblekeys

oldkey possiblekeys

dl DISK

newkey -kquit

d' -diski P ran (docdisk) S 2

(Iprojviewl "- projview,

'projbuild' F-* projbuild,
'Point' F-), point,

'view' <- sstart,cursor,

screendoff ,cam, proj>

i1 the user has commanded the termination of the system then this

operation will compiete the session by saving the Important parts of the statej

CURSORMOV

AMACH INElA

newkey,

oldkey legalkeys

*arrowcommand A

((oldkey -kwmove)

MOVEWINDOWMACINEIA [offset/(a,b) '

arrowcommand A

(oldkey -ksgmove)

MOVESG MACINElA (off set/(a,b)]

arrowcommand A

(oldkey -kwexpand)

SI ZEWI NDOWMCHIEIA
(up/c; down/d; lef t/e; right/f]

* arrowcommand A

(oldkey -kwretract)

SI ZEWI NDOWMCHINEIA

(up/g; down/h; left/i; right/j]

arrowcommand A

(oldkey -ksgexpand)

-c ~SIZESGMINl
N (up/c; down/d; lef t/e; right/f]

arrowcommand A

(oldkey -ksgretract)

SIZESG MACHINEIA
[up/g; down/h; left/i; right/j]

arrowconuuand A

(oldkey -kscroll)

SCROLLMINl (offset/(ab)])

(oldkey

(kwmove, ksgmove, kwexpand ,ksg expand,

kwretract,ksgretract,kscroll) v

NOT arrowcommand)

A

%%the cursor must stay on the window. (ERROR2l)

((show e (newdoc,homedoc) A

sstart+cursor-(l,l)+(ab) e

aread(slavespot(z)-(O,l),projsize(z)+(O,l)))

%%the cursor must stay on the tabletop

area. (ERROR22)

(show -tabletop A

sstart+cursor-(l,l)+(a,b) c

%%the policy for movement of the cursor, screen, and

screendoc has not yet been defined.

(screendisplay(cursor,sstart, (a,b),screendoff)

insertmode' - false :
oldkcey X (kpaste,kpnc) ==a

msgline' - blanlcmsg

oldkey e (kpaste,kpnc)

msgline' 'PASTING--POSITION WITH ARROWS, END

WITH ACCEPT')

where

(newkey -left) ~a -1 Ab 0

(newkey -right) ~a-+lA b 0

*(newkey -up) =0a -O0Ab- -1

(newkey - down) a -0 A b -+1

(newkey - tab) a -5 A b -0

*(newkey - left) 0 e -1 AC- d -f -0

(newkey - right) =* f -1 A C - d - a - 0

(newkey - up) =0 C - 1 A d - e - f - 0

(newkey - down) -* d - 1 A C - e - f - 0

(newkey - tab) =0 f - 5 A C = d = e = 0

(newkey - right) =* i -1- A g -h -j -0

(newkey - left) =* j -1- A g- h 1 0

(newkey -down) =0g -lA h-i-j-0

(riewkey - up) =* h -- i A g-i- j - 0

(newkey -tab) 1i--5 Ag h j 0

z a projview (novproj)

This operation establishes (albeit abstractly) the effect on the display

of moving the cursor with the directional commands. Notice that In some

cases the use of the directional commands will give directional parameters

to other operations rather than directly moving the cursor.

j.

ACCEPT-

AMACH INElA

-' newkey,

oldkey legalkeys

%%the cursor must point to a window. (ERRORI)

newkey e kpaste,kpnc) (vpno 0 0 A

NOT innameline(projview,vpnocursor,sstart) A

%%the document cannot become too long.(ERROR11)

rows(a) + y(panesize(b)) 4 maxdoclength A

* %%%the lines to be split by the paste must not contain a

-~ . building projection which would be disturbed. (ERROR6)

linesok(whichdoccols(docdatal(whichdoc)),

y(postion) ,projbuild))

(newkey -kpaste) PASTESHNl

(newkey -kpnc) mo PNC MACHINEIA

arrowcommand' -false

Orp

where

a a dn (masterspot (projview (vpno)))
& 0b a projview (vpno)

This Is a very safe operation which will do nothing except to end

a paste or paste and cut operation or stop other arrowcommand operations.

k.

* PASTEIT

. AMACHINE1A

newkey legalkeys

%%the cursor must be in a window. (ERRORi)

vpno, 0 0

%%the stained glass pane must exist in this

window. (ERROR2)

panesize (projview (vpno)) > (1,1)

%%in the case of paste and cut, the cursor cannot be in

the nameline(ERRORl) and the area to cut must not include

shared information. (ERROR6)

(newkey -kpnc) whichdoc 0 none A

areaok(whichdoc,cols(docdatal(whichdoc)),

- .. a,a+y(panesize(z))-l,projbuild)

insertmode' false

arrowcommand' - true

msgline' 'PASTING--POSITION WITH ARROWS, END WITH

-S.. ACCEPT#

where z -projview (vpno)

a -y(retv-vprojection (z) (startpane(z)))

This Is the set up command for a paste or paste and cut operation.

* The user selects the area to be copied (or cut) with this command and

concludes the pasting of the selected Information with the ACCEPT.
1..?

WCREATR

AMACH INElA

Te uthe selected window location must leave room for the

nameline on the tabletop.(ERROR5)

area(sstart,sstart+cursor-(l,l))

area((1,2), (tablewidth,tablelength))

- %%% this must not-exceed the limit on number of allowable

viewing documents.(ERROR8)

novproj (maxvproj

start' - sstart

stop' - sstart + cursor - (1,1)

insertmode' - false

arrowcommand' - false

msgline' - 'CHOOSE A DOCUMENT TO PROJECT, PLEASE'

This is a set up operation for the creation of new window. With

this operation the user has selected the window location and must now select

a document to place in the new window.

'A'

Status Values

ERRORI a 'THE CURSOR IS NOT IN A WINDOW'

ERROR2 a 'A STAINED GLASS PANE DOES NOT EXIST IN THIS

WINDOW'

ERROR3 a 'THE MASTER OF THIS PROJECTION MUST STAY ON THE

DOCUMENT'

ERROR4 a 'THE STAINED GLASS PANE MUST STAY ON THE WINDOW'

ERROR5 a 'THE WINDOW (AND NAMELINE) MUST STAY ON THE

TABLETOP*

ERROR6 a 'THIS EDIT COMMAND WOULD DISRUPT SHARED

INFORMATION'

ERROR7 a 'THIS WINDOW ALREADY HAS A STAINED GLASS PANE'

ERROR8 a 'THERE IS NO ROOM FOR THE REQUIRED NEW PROJECTION'

ERROR9 a 'THERE IS NO COMMAND TO REVERSE AT THIS TIME'

ERROR10 a 'THE WINDOW IS TOO LARGE FOR THE INTENDED

DOCUMENT'

ERROR11 a 'THE DOCUMENT CANNOT EXTEND BEYOND ITS ALLOWED

LENGTH'

ERROR12 a 'THE UPDATED LINE WOULD NOT FIT WITHIN THE CURRENT

MARGINS'

ERROR13 a 'THERE IS NO ROOM FOR A NEW DOCUMENT IN THE FILING

CABINET'

ERROR14 a 'THE DESIGNATED PROJECTOR AREA DOES NOT CURRENTLY

EXIST'

ERROR15 a 'THE DESIGNATED CAMERA AREA DOES NOT CURRENTLY

EXIST'

ERROR16 a 'THE INDICATED SPOT HAS NO SHARED DATA TO REMOVE'

ERROR17 a 'TWO WINDOWS ARE NOT OVERLAPPING AT THIS POINT'
ERROR18 a 'THE NAMELINE MUST NOT BECOME INVISIBLE'
ERROR19 a 'THE S. G. PANE CANNOT BE REDUCED ANY FURTHER IN

THIS DIRECTION'

ERROR20 a 'THERE IS NOTHING TO DELETE'

ERROR21 * BUZZ

ERROR22 a BUZZ

ERROR23 a BUZZ

V.2 Implementation Plan. -

There are two related areas of the design which have not been

specified -- the display development and the disclosure policy. The

algorithms for these two segments of the design will be discussed in the

" first section of this implementation plan. All other required Initial prototype

- algorithms are Immediate or obvious from the design specification. The

second section will deal with a variety of other significant details about the

implementation.

The display and the disclosure policy.

Although the APPEARANCE observation defines the appearance of i,

each point on the tabletop, it does not provide a practical algorithm for the

Implementation of that abstract definition. A number of possible approaches

exist but they can generally be divided into two categories -- 1) screendoc

coordinate definition or 2) viewing projection application. The former requires

that each coordinate position on the tabletop (or its selected subset,

screendoc) be defined individually. The latter suggests Initializing the

screendoc to the appropriate background color and then placing the windows

in order on the screendoc. Both algorithms would require the determination

of the ultimate master for each coordinate position within a viewing window. 7-.:
Either algorithm could benefit from appropriate speed-ups, eg. where possible

use rows Instead of simple coordinate positions. A very much simplified

prototype has shown that on sparsely windowed displays or largely windowed

displays with little overlap of windows, the second approach is generally faster.

Since a highly cluttered tabletop with many overlapping windows is not a likely

mode of utilization for this system, the viewing projection application algorithm

appears to be the best choice.

Other decisions required In the definition of the display algorithm

Include the frequency of screen display refreshment, and the amount of

screendoc area redefined before each display refreshment. The simplest

starting plan would be to totally rebuild the screendoc and refresh the display

after each user Input. A significant and almost Immediate improvement can

be gained by limiting display refreshment to those valid inputs which change

the screen. This would eliminate rebuilding the screen and refreshing the

display after error Inputs, many cursor movement commands, printing, etc.

Of course, total rebuilding of the screendoc before each refreshment is the

simplest Implementation since it can be centralized and Is not dependent upon

the type of display change required. With this Implementation there is no

advantage to having the screendoc larger than the screen area.

This simple base point (a viewing projection application driven

screendoc ouilding algorithm with simple line-at-a-time speed-ups along with

a policy of building and refreshing the entire screen with each screen

changing user command) can be altered as necessary to conform with the

user's non-functional requirements for the speed of display production If

allowed by remaining memory resources (speed vs memory trade off).

The display disclosure policy determines how (if) the screen is rebuilt

when the cursor Is forced to move by a user command. This happens. for

example, during editing operations (insert, alter) to advance the cursor to

the next character, during window sizing and movement to maintain the cursor

within the current window, or with simple arrow keys designed to move the

cursor. Two forms of disclosure are required by these various cursor

movement commands -- screendoc disclosure to keep the cursor on the

screen and window disclosure to keep the cursor on the current window.

Screendoc disclosure Is potentially necessary for any user command that

moves the cursor. Window disclosure Is only required In operations where

the cursor is required to remain within the current window and there is the

possibility that the cursor may be moved out of this window or onto an

overlapping window. The user commands which require this latter type of

disclosure are: INSERT, ALTER. NEWLINE, SIZEWINDOW, and MOVEWINDOW.

Screendoc disclosure may require that the screen be moved on the

screendoc or the screendoc moved on the tabletop. The policy for screen

movement is that the scrolling capability of the video display unit should be

utilized where possible. Since left and right scrolling (panning) are not a

feature of the target terminal, and therefore full screen refreshment will be

required, panning should be Implemented to move the screen slightly more

than appears Immediately necessary In order to minimize the number of

required screen refreshments. Whenever the screendoc Is also required to

move, It should (if possible) have the current screen centered within It.

Implementing window disclosure in operations where the cursor may

be forced to follow the window (eg. SIZEWINDOW, MOVEWINDOW) will require
the shifting of window projection order (strength). The algorithm for window

reordering should not affect the relative strength of any window except the

*o - - - --

one to be disclosed (le. the remainder of the display must be preserved).
The following predicates of the state space and observations are

relevant to the Implementation of the display development and disclosure policy 0
algorithms:

DISPLAYED * FILE-APPEARANCE; PROJECTED-APPEARANCE;

APPEARANCE; DISPLAY-APPEARANCE

1. cursor e area((1,1), (screenwidth,screenlength))

The cursor stays on the screen.

2. screendoff e area((1,1), (tablewidth-sdwidth+1,

tablelength-sdlength+ 1))
The screendoc stays on the tabletop.

3. sstart c aread(screendoff, (sdwidth-screenwidth+1,

sdlength-screenlength+i))

The screen stays on the screendoc.

Other implementation considerations:

a. Physical to logical key association.

The lack of adequate user function key space can be solved by using

a single key for corresponding pairs of commands which affect either the
window or the stained glass pane (le. move, retract, expand, remove, create.)
This will reduce by 5 the number of keys required for user commands. Of
course, a second user Input would be required to differentiate window from
stained glass pane commands.

The placement of the various user key Is left to the Implementation

and will be based on ergonomic considerations.

b. Undefined appearance.
The specified system does not provide a technique to trap undefined

coordinate appearance due to the mutual circularity of information sharing
projections. The potential result Is a non-ending search for an ultimate
master location and hence a useless system. The algorithm to detect such
problems should determine If the search for an ultimate master ever identifies

the same Intermediate master location for a second time. This Is the practical

manifestation of mutual circularity.

* y~*- * - - - . V s'- -U U..• - --

An even stronger constraint could be applied to eliminate the

possibility of excessively long (but not necessarily circular) searches for an

ultimate master. The list of intermediate master locations could be limited,

as an arbitrary example, to three times the number of allowable building

projections. This would place a worst case limit on the time required to
construct the screendoc.

When a location on the screendoc Is trapped by the algorithm to

detect mutual circularity or limit ultimate master searches, then a symbolic

(undefined) character should be taken as the contents of that screendoc

location. The character "?o Is often used for this purpose.

c. Window appearance. ;i

In addition to the specified use of a reverse video nameline to head

a window, some form of border should be used to delineate the remaining

three sides. However these border markings should not constitute part of

the window Information.

d. Non-functional requirements.

Due to the size of the required target machine, there is a very real

trade off among speed (eg. user command execution and display generation

wait time), the limited main memory space, and capability (eg. the number
of projections and documents allowed). The best ultimate balance of these

" factors Is impossible to determine until a fairly complete prototype has been

developed for user tests. However, early prototypes ([Richardson,811 and

[Richardson.82 have given valuable Insight Into the appropriate system design

for the non-functional requirements. This Insight Is manifested In the design

specification as redundant (derived) components which give greater flexibility

to the Implementation. It also allows us to define a reasonable starting point
to use as a prototype for further tuning of the design in light of the

non-functional requirements. Because the following represent only an Initial

Implementation estimate, care must be taken to maintain as much of the

flexibility designed Into the system as possible. This can be done through

the use of good strutured programing practices, such as the use of constants.

modularization. explicit module communication, etc.

1. Implementation data structures:

-as represented in the design, using packed arrays or arrays

of sequences as ARRAY

2. Disk vs main memory:

-homedoc In memory

-screendoc In memory 0

-all other documents on disk with direct access capability

3. Constant values:

maxvproJ = 5

maxbproJ = 5

The user cannot cope with too much information on the desktop at

once, so the number of allowable window need not be large. Similarly the

amount of Information which can be shared should not be excessive, or the

user will tend to lose track of It.

sdwidth = 80

sdlength = 23

As discussed earlier, the initial prototype will rebuild the screen after

each user operation which changes the screen; therefore, the screendoc need

not be any larger than the screen.

maxdocno = 5

maxdoclength = 40

tablelength = 120

tablewidth = 120

These limits on the documents are harsh but provide a reasonable

starting point for non-functional requirement testing.

4. Speed-ups:

Prototypes reveal that some speed-up will be necessary in two areas:

display creation and refreshment, and editing commands. The Initial display

speed-up are discussed above. Other display speed-ups will require the reuse

of Information gained in previous display generations. For example

regeneration of only affected parts of the screendoc. screendoc larger than

screen to save redefining screendoc for each small screen movement.

permanent tables reflecting VPNOs or reverse video "on" for the screendoc

area, etc. are potential speed-ups which will need to weighed against the

space required to produce them.

Since (initially at least) all documents will be held on disk. each

editing command will require one disk access and often more. For simple

commands such as Insert, alter, and delete, this Is likely to be prohibitively

slow. The natural speed-up here would be to hold part or all of the document

being edited in main memory and only update the disk as required.

..1

CHAPTER VI

Comparison of Methodologies

This chapter compares the proposed methodology against the criteria

developed In Chapter II and assesses two other methodologies of interest.

VI.1 Analysis of the Case Study.

We shall begin the critique of the methodology by viewing our

experience in the case study in light of the criteria previously noted. Where

necessary we shall attempt to scale up our case study experience to allow

us to at least generalize about utilizing the methodology in large system

developments.

a. Against the Criteria.

Creativity and Cumulativity. In the case study. the hierarchical

framework with the Ilmitative approach provided approximately the desired

degree of guidance and control. Only occasionally was there a dilemma about

how to progress to the next level of design. These dilemmas were usually

caused by an Improper decision or design step taken earlier. In these

Instances backtracking was required but was greatly facilitated by the vertically

structured decision levels. Certainly, experience with the design technique

will remove some of the requirement for backtracking. It also appears that

defining very abstract Initial designs will require some experience since this

is not something we have done in other design techniques. The initial design

definition coupled with the horizontal decomposition is certainly the step which

will require the most ability, at least until a good abstraction library becomes

available.

The reapplication of abstract components (as with thp editor) was very

simple and saved considerable time. An unexpected benefit derived from

the attempt to improve the cumulativity of software design was the ease with

which the resultant system could be adapted for variations In some of the

non-functional requirements. For example, a whole spectrum of storage

space/execution time relationships could have been defined with only minor

changes to the constant definitions or implementation plan. This added benefit

appears to result from the delaying of unnecessary decisions (like constant

values) and the Inclusion of redundant (derived) components within the state

space. Such ability to design a family of programs in this way leads us

to the possibility of using the methodology to design systems for mass

production and allow minor modifications for the various clients' requirements.

This would be similar to the automobile Industry where the customer orders

a car with one of a number of different engines, automatic or manual

transmission, disk or drum brakes, etc.

Reliability. Without following the case study product through the

remainder of its life, it is not possible to give absolute evidence about its

reliability. However, the general point we can check Is: did the methodology

help to prevent errors or correct them early (ie. did the methodology reduce

the cost of our required level of reliability?) Even though our required level

of reliability did not necessitate the use of formal verification, the case study

was implemented with only one minor design error being detected. (The

SIZEWINDOW operation did not adjust the masterspot to coincide with the

required adjustments to the slavespot.) This error was Immediately

corrected. Because of the design descipline Imposed by the methodology,

a number of would-be errors were detected before they could be propogated
to lower levels of design. We agree with [Berg.82:1531 that *the disciplines

Imposed by writing a formal specification lead to very modular and

straightforward programs."

No expensive errors -- those at the system level rather than just

within an algorithm -- were found. In large measure this is due to the

requirement to recompose the various system components to ensure that they

fit together to create the required system. In larger systems. achievement

of such component compatibility (to each other and the system as a whole)

will require considerably more management control than was necessary in

the case study. (See the discussion on manageability below.)
The value of Informal reviews of formal products (le. at the abstract

and detailed baseline design reviews) was not tested in this case study

development. Since this Is not a common practice. further research is

required to determine Its effectiveness in the enhancement of system reliability.

717e

This Is especially true since we propose to let this Informal review guide

at least some of the formal verification.

Requirement evolution. Evolution of functional requirements was only

simulated In the case study and therefore it is difficult to make generalizations

on this criterion based on the case study experience. However, the emphasis

on validating the requirements In tandem with producing the design has had

the beneficial effect of concentrating the design effort on the very earliest

phases of the lifecycle.

The provisional user's manual as a prototype mechanism to direct

the requirements evolution was very useful from the designer's viewpoint.

(Again. since there was no real client, we can not comment on the client's

perspective.) Although the user's manual took a significant amount of time

to write, it was time -well spent early in the design cycle. It forced

consideration of a multitude of possible problems/situations and was a valuable

guide In the lower levels of design. Of course, most of the effort spent on

the provisional user's manual will be directly beneficial to the final user's

documentation. in general. Boehm agrees with this assessment: *writing test

plans and draft user's manuals tends to Increase the cost of the requirements

and design phases and significantly decrease the costs of testing and
maintenance phases. (Boehm.81:461

However. one general criticism has been leveled at look ahead

techniques such as the provisional user's manual.[Hornlng.81 That criticism

suggests that such techniques can generate designs that are unimplementable

or prohibitably expensive to Implement. While that danger certainly exists.

the formalism and the limitative approach of this methodology helps to

couteract the evolution of an unrealistic design. Additionally, the use of

prototypes (Horning's proposed technique to replace look aheads) is also

advocated in this methodology and can be used with the provisional user's

manual to check potential Implementation difficulties.

Through the Lifecycle. As can be noted In the case study, the

transition from decomposed problem to the high level abstract design was

greatly aided by the existence of previous abstract designs (eg. the editor).

The representational transformation at the other end of design was aided by

the Implementation plan. Consequently. the goal of smoothing representational

and phase transIstions In the design has been met in this methodology.

7 -7

Although the case study was not extended Into the later phases of

the lifecycle. the products produced in the demonstrated phases would

certainly continue to be useful later In the lifecycle. The incremental design

documentation with Its referencing scheme should allow the maintainer to find

those portions affected by proposed adaptations or corrections; while resource "-.

usage information attached to each vertical module will give him a sound "

basis upon which to estimate the cost of such changes. 74

Client Involvement. The criterion of continous client Involvement was L
* not tested in the case study. The provisional user's manual would seem -maw

to be one effective method of communicating with the client. It also appears

that the Comments and Requirements portions of the template along with
.7 introductory comments In the high level Initial abstractions (eg. FILER) provide j

a very good basis for the required Intermediate client documentation. The

frequency and level of Interaction with the client Is in the purview of the

design manager and is based on the ability of the client and the complexity

of the system. However. there are certainly ample user Interface requirements

built into the process.

Manageability. One of the key factors to be assessed In the case

study is whether the disciplined use of formal techniques allowed the

*! opportunity for management control and visibility of the intermediate stages

of the development -- that is. are the management and formal techniques

- mutually supportive?

Certainly the baselines indicated in the case project represent

excellent opportunities to determine the progress and correctness of the

design. The hierarchical nature of the design with decisions explicitly noted

in the required documentation (the template) gives a much finer grain of detail

for management control between baselines. This two level approach to the

%1d management control of the development would seem to provide sufficient

opportunity for management to direct the development to the best compromise

among the various development goals (including budgetary goals).

Finally, as noted earlier, it Is Important to Insure that sufficient control

can be afforded to the expensive area of formal verification. The separation

of formal verification from the design effort will allow special management

attention to be given to the level and cost of verification for each component.

Just as baselines and vertical level documentation provided two layers

of control and visibility, the milestones and accounting Information on the

template provide two layers of budgeting control. However, due to the

evolutionary formulation of requirements. providing Initial resource estimates

may be difficult in large system developments. Only experience on a larger

scale will determine If such estimates are more difficult or less accurate then

initial resource estimates in other methodologies.

With no participant Interactions in the case study we can only

generalize about the effectiveness of communication among participants of

a large project. The recording of Individual decisions in both formal and

Informal notation (and relating the two) certainly enhances the communication

of technical information about the design. The use of natural language as

explanation of other portions of the formal design (eg. auxiliary definitions,

operations, etc.) also has this desired effect. Because of this, the template

documentation promises to provide effective communication to all participants

in the design process except the client.

In the case study. we found the use of the template to be easy and

effective in keeping the documentation current with the design. The only

difficulty came in the last stage of design where the number of required

decisions went up drastically and their individual significance fell. From this

experience we suggest that there may be a point after which the explicit

documentation of a number of small decisions is best left to a narrative which

explains them en masse (eg. a section of the provisional user's manual.)

In the stepwise refinement of any large system we can expect that at least

some of the steps must be large -- usually the final ones.

One final manageability consideration is the selection of a design team

structure which would best suit the communication and other management

. requirements of this methodology. It seems that a chief programmer teams

style organization with an active manager and limited number of specialized

members best matches the structure of the methodology.

b. Problems.

In addition to problems noted and recommendations made In the last

section, a few other points need further consideration.

First, we need to emphasize or, In some cases, determine the limits

of the methodology's usefulness. It Is fairly obvious that the presented

techniques are too sophisticated for use on very simple projects; however.

- it is not obvious just how large a suitable project must be. The methodology

does not Intend to guide the hardware aspects of a total system design or

software design for parallel systems. We have Insufficient experience to
suggest which other types of applications (if any) are not easily designed

In this methodology.
Secondly. It Is not yet possible for us to tell the cost of training design

participants and management In the techniques of the methodology. 1t is
obvious, however, that this methodology will be Initially more difficult to learn

and use than some of the non-integrated methodologies (eg. the USAF

'methodology.) There may be a hidden cost associated with changing an

organization to the personnel structure and management organization required

by this methodology. There Is also some reason for concern that we are

requiring too much of the project manager since we are adding a formal

notation. logic, and the ability to abstract to his already substantial burden.

Thirdly. the volume of the case study documentation demonstrates

that some automated support Is required for the techniques to be viable In

large system developments. This automation must Include at least an editor

and a hierarchical database system. A number of other useful automated

tools are listed Section VII.2, Future Research.

Fourthly, one of the Important attributes of formal design Is the ability

to hide previous levels of vertical decomposition for the sake of simplicity.

However, this advantage becomes a disadvantage at those times when you

wish to view the state space with all of its predicates and auxiliary definitions.

At these times It becomes necessary to "mentally recompose' the appropriate

vertical levels. Since this Is strictly a textual operation. It would be very
useful to have some automated assistance in vertical recomposition.

Finally. It appears likely that a number of syntactical equivalences

or notational extensions would be useful In making the formalisms more

* understandable and easier to construct. One obvious Instance of this In the

* case study was the specification of error conditions. A second example was

the component 'no change* specification In the operations. In both of these

* cases, we created a new con vention to simplify the specification writing but

both should be handled In a standard way In the notation. Another extension
we would prefer to have In the notation Is the more readable IF. ...TH-EN. ... ELSE...

form of the alternative.

Vi.2 The Hierarchical Development Methodology.

(Unless otherwise noted, the details of the Hierarchical Development

Methodology are taken from (SiIverberg; Robinson,78; Robinson.79).)
-7.

The Hierarchical Development Methodology of SRI International has

as Its goal the design and development of large scale software systems using

formal techniques In an Integrated approach. It is. in a number of respects.

similar to the methodology we proposed In this thesis. The differences.

however, are important ones and will become evident as we describe HDM.

The comprehensive approach of HDM can be explained by reviewing

four aspects of the development process:

1. Structuring concepts.

2. Process guidelines and milestones (stages).

3. Languages. - and

4. On-line tools.

Structuring concepts.

The structuring concepts of HOM pertain to the development process

itself and the resultant software systems. A system in development will be

decomposed (vertically) Into a sequence of abstract machines, each of which

provides a complete set of facilities to the next higher level. The top level

machine facilities are available to the user; the lowest level (primitive machine)

facilities are those provided by the environment (eg. concrete machine.

operating system, high order languanges, etc.) The user machine and the

primitive machine are collectively called the extreme machines.

Within each vertical level, HDM allows horizontal encapsulation

(modularization) of closely related capabilities. This means that each vertical

level of decomposition will have a different horizontal decomposition. Our

approach was to decompose horizontally first with a different sequence of

vertical levels for each horizontal module. We also consider the abstract

machine to be the basic unit of the design process, while HDM holds the

modules describing the abstract machine to be basic. However, the reasons

for the horizontal decomposition are the same In both methodologies: to allow

component substitution, to contain the effects of likely requirement changes.

and to aid the structuring and simplicity of the design process. The different

methods of hierarchical structuring Indicate a significant difference in

emphasis in the two methodologies which will be explained in detail later.

.I

Process guidelines.

The guidelines Included in the HDM development process are the

following:

1. Decisions must be recorded as they are made. This requirement

Is for both a formal and an optional informal statement of the decision but

no correlation Is attempted between the two forms to aid readability of the

formal statement. Also, the designer is encouraged to record Informally any

decisions he has made even if the decision will not currently be reflected

In the formal specifications.

2. Decisions are to be made in favor of generality and adaptability.

Parameterized abstractions, use of abstract constant representations, and

judiciously postponed decisions are features of HDM which are also Important

in our methodology.

3. Minimize the dependency of decisions on other decisions and

encapsulate related decisions into common units. Both methodologies attempt

to decouple the design modules. Where the modules are not independent.

HDM requires informal definition of the module Interconnections within an

abstract machine. In our methodology, the modules are the abstract

machines.

4. Make explicit all sharing of decisions. In HDM, If state design

decisions affect more than one module of an abstract machine, then the

cross-referencing of shared decisions must be noted.

The stages.

The following stages and their associated milestones are the

components of the HDM design process:

1. Conceptualization.

Conceptualization Is the determination of the problem to be solved.

The constraints of the system will be stated as precisely as possible In terms

-' ,of user's requirements and environmental (hardware, Implementation language.

etc.) requirements. These requirements are stated in natural language.

This clearly demonstrates the difference in emphasis alluded to earlier

between HDM and our methodology. We developed the criterion that the

requirement definition must be an evolutionary process. Consequently. we

advocated a very abstract Initial design to simplify the translation of Informal

requirements and to allow explicit statement of all design c ecislons in the

A

.

simultaneous derivation of requirements and system design. We feel the plan

to Initially define not only the total requirements of the system but also the

underlying environment, does not give proper importance to the requirements

definition process. As we noted in Chapter II. the "precise' statement of a

problem definition Is often very difficult or Impossible at the outset of a design

process.

2. Definition of the extreme machines.

In this stage the extreme machines determined In the conceptualization

are further defined Informally using the Hierarchy Specification Language

(HSL). The machines are vertically decomposed Into modules, the names

of the data structures and operations are listed for each module, and a

description of the module Interconnections are produced. The prose

description conveys the decisions which were in the designer's mind as he

was defining the organization of the machines.

This initial definition of the abstract user's machine and the

implementation structure presupposes confidence in the problem definition set

forth in the previous stage. We feel that this confidence is likely to be

unfounded without a more systematic approach to the statement of the

requirements. Including the active Involvement of the client. To define the

extreme machines as required by this stage, the designer must abstractly

visualize the complete user's system with all of its required decisions, he

must sort the decisions by effect, and he must produce module headings

for the most appropriate decomposition of the abstract machine's capabilities.

This early review of the abstract design is an excellent technique for

determining potentially difficult aspects of the development process; however,

due to the well documented difficulty of validating informal requirements, the

designer cannot be certain that these very important (costly to correct) early

:- decisions will lead to the appropriate system.

3. Definition of the intermediate machines.

The definition of the levels of abstract machines between the extreme

machines Is the goal of this stage. These intermediate machines are defined

In exactly the same manner as described above. The designer must determine

the number of Intermediate levels which Is appropriate for a particular system.

As noted earlier, the horizontal decomposition of each vertical level Is

Independent. The decision about how to decompose a vertical machine level

Is based mainly on a concern for efficiency and algorithm design since many

of the design decisions about capability of the user's machine have been

made In the previous step. Therefore, the Intermediate machines correspond

closely to a series of refinement machines in our methodology, and the idea

of design by exclusion (or even Inclusion) of capability (ie. advancement) does

not exist. Now It Is obvious why our hierarchical structuring differs from that

of HDM -- our emphasis is on requirements definition, client Interface, and

structured system design. while theirs is on structured system refinement and

(as we shall see) program verification.

4. Specification of modules.

This stage formalizes the decisions made in the previous two stages.

Each module of every abstract machine is specified in SPECIAL. The

specification Includes Initial values for each data structure, definition of all

state transition operations, and the enumeration of objects shared between

two modules. It Is this stage which characterizes the functional behavior of

an abstract machine. An abstract machine specification is derived by

collecting the specification of its component modules.

5. Machine representailons.

The fifth stage defines nonprimitive data structures In terms of data

structures from the next lower level. In this way, the state of each abstact

machine. Including the user's machine, is defined by the data structures of _70

the primitive machine through a series of mapping functions. These mapping

functions are written in SPECIAL but are otherwise equivalent to retrieval

functions between vertical levels of our design. At the end of this stage

the "detailed" design is complete.

6. Abstract Implementation.

The abstract Implementation is used to formulate and record the final

Implementation decisions. An abstract program is written to implement each

specified operation as a sequence of invocations of operations from the next

lower level. The Intermediate Level Programming Language (ILPL) is used

to describe the abstract programs.

7. Concrete implementation.

This stage creates concrete (machine executable) programs for each

abstract program written In the previous stage. The ease with which this

translation from abstract to concrete program Is accomplished depends upon

the accuracy of the Initial primitive machine model. Therefore, the earliest

decisions taken about the primitive machine (stages 1 and 2) will not come

under close scrutiny until the end of the development process -- a potentially

dangerous situation but one which occurs In some form in every methodology.

8. Verification.

In HDM. formal verification takes two forms:

1. Proofs of the properties of the user interface of the designed system
(proofs associated with stages 1-4). Experience has shown that proofs of

security and fault-tolerance properties can be constructed based on the HDM

development approach.

2. Proof that the Implementation meets Its specification (proofs associated

with stages 5.6. and 7). This form of verification is the motivating force

behind the style of HDM software development. The techniques for

implementation verification have been well defined using the Hoare

pre/postcondition assertions, hierarchical structuring of the implementation,

and simple abstract data assertions. Even so. the implementation verification

process is so difficult that It remains an optional stage of HDM.

Languages.

Three different notations are used in HDM for different stages of the

design process and a programmitig language is required for the system code.

The most important HDM language is SPECIAL (specification and

assertion language). Based on first order predicate calculus and set theory,

SPECIAL is used to define modules of the abstract machine and define the

mapping relationships between data structures at successive levels. Like Z.,

it supports a state-machine specification approach.

Unlike Z. SPECIAL has a very constrained concrete syntax which

is *too often awkward and unpredictable" [Silverberg;111 and the language

structures CV-, 0- + OV- functions) do not conform to the structure of the
state-machine model. Additionally. only a subset of the language has been
given formal semantics.

SPECIAL Is not balanced in its abstraction capability -- procedural
abstraction Is much more easily developed than data abstraction. The

primitive types are boolean, character, Integer. and real; more complex such
as records can be built into the primitive machine definition but abstract types

cannot be adequately defined. Certainly there is no provision for utilizing data

types from an abstraction library as we have In the case study.

Finally. the error handling mechanism built Into SPECIAL will not allow

a state change with an error return. With our precondition error handling

technique we have not been similarly constrained.

A second generation specification language to replace SPECIAL Is

in design,

.s. ' --

The Hierarchy Specification Language (HSL) is used to describe

abstract machine levels and the structure of the levels. HSL specifications

are used to record the sharing of decisions among modules so that

consistency of their specification can be checked.

The Intermediate Level Programming Language (ILPL) describes

abstract programs for each operation of every module In the design. ILPL

uses data structures supplied to the modules of the primitive machine as

its 'built-in* data structures; therefore, it is very simple and very general.

On-line tools. 2
There are several tools which have been used extensively and several

others which are in design. The goal Is to create a development environment

which is supported consistantly and thoroughly by automated support.

The first several tools are specification checkers which enforce the

syntactic consistency of the SPECIAL. HSL, and ILPL specifications. I
Another tool with extensive application in the Multilevel Security

Verifier. This verifier Is used to prove that a design specified by a set of

SPECIAL modules statisfies a requirement for different levels of access

security.

Tools which are still in development Include a *basic* PASCAL

verification system. a module simulation system for rapid prototyping prior

to Implementation. and a development data base system to track specification

changes and do syntactic consistency checks or alert the designer of effects

caused by a change.

Summary.

There are a number of basic similarities between HDM and our

methodology. Including the use of formalism, a hierarchical structure with

* abstraction and a mechanism to record design decisions. However. the

- differences between the two methodologies are striking. The primary

* divergence Is one of emphasis. HDM emphasizes the later stages of the

development process with a hierarchy to support the refinement of the design

and the formal verification of the Implementation. Only passing notice Is given

to the difficulties of requirements definition and validation On the other hand,

we have assumed that absolute Implementation verification is not currently

cost effective and should be only one of the tools available to the design

-,

manager. We also believe that a validated implementation Is not of value

unless It represents the solution to the clients requirements. Therefore. we

have designed our methodology and organized Its underlying hierarchy to

rsupport evolutionary requirement definition and validation: we emphasize the

* early part of the design process.

Along with this we placed great importance on the role of the client

and the manager In the formal design process. These priorities are not

obviously manifested in HDM although some manageability is inherent due

to the incremental nature of the process. We also put an emphasis on

abstraction which does not appear In HDM. It Is difficult to simultaneously

design large families of systems or encourage cumulativity of the design

process using the Hierarchical Development Methodology.

The single greatest capability available in HDM which we are missing

Is early and precise expression of the Interfaces between modules and 74.0

between abstract machines. While this is an enviable characteristic, the price

paid to obtain it in HDM is high -- the early design process should not be

Ignored for the sake of convenient module structuring and Interface definition.

However. HDM was originally created for operating system design and may

be better suited for that role than our methodology because of this precision

In module Interface design.

" L "j

.'

'.4

Vl.3 The USAF Development Methodology.

(Unless otherwise noted, the details of the USAF DevelopmentI, Methodology are taken from [USAF; USAFa].)

The software development methodology currently in use by the United

States Air Force Is predicated on the management approach to system design

(see Chapter I). It was one of the first methodologies to apply the 'waterfall'

model of software development. The major tenets of this model are

(Boehm.81 ;361:

"1. Each lifecycle phase is culminated by a verification and validation
uactivity whose objective Is to eliminate as many problems as possible in the

products of that phase.
2. As much as possible, iterations of earlier phase products are

performed in the succeeding phase.'

We will review this methodology by discussing the activities and the

products of each lifecycle phase. Within these phases are four baselines,

six formal reviews, and two audits which provide points for management control

in the development process. Standard checklists have been developed for

use at these control points to assist the management of the design effort.

Documentation (communication) is given special emphasis in this

methodology. Each documentory product required within the lifecycle has

a predefined format and style. The standards Include numbering systems and

nomenclature to provide a common reference among design participants.

While this rigid adherence to conventions can be constraining and even

wasteful at times, It has the very beneficial effect of standardizing the

communication to facilitate management and user understanding. Also, the

required documentation Is not constant for all developments -- certain of

the documents are not required on developments which are estimated to be

below standard size thresholds.

The most significant documentation required within this methodology

Is the specification hierarchy. It Is this succession of (informal) specifications

which embodies both the progressive development of the requirements and

the evolution of the design. The three levels of specification are:

1. Functional Description (FD)

2. System/subsystem Specification (SS)

3. Program Specification (PS)

These documents will be explained as they are encountered within the

following lifecycle description.

The Lifecycle Phases.

Concept Phase. The Input to this first phase are a defined need-

*and the technical data necessary to delineate this need. It Is the objective

* of the concept phase to define an affordable system which Is consistent with

*the requirements. To achieve this objective, feasibility studies (possibly

Including pilot programs). alternative solution comparisons, and risk

* assessments are accomplished. From these preliminary efforts cost estimates

are produced and priorities are enumerated. If the needs can be satisfied

using current technology under current budgetary contraints. then Initial

*milestones and a schedule for development are determined. .
Substantial effort Is put Into this Initial phase to validate the need

and determine the feasibility of the proposed solution. On a large project.

one to four years will be allocated to the concept phase. This heavy front

* end loading of the Ilfecycle Is In some respects similar to the underlying

approach we have taken In our methodology; however, while we use

* abstraction and Incremental decision making to help us define the
* requirements. the USAF methodology relies heavily on prototypes and

simulations in order to compare alternatives.

A number of documents are produced In the phase. Including the

- Functional Description WFD), the Data Automation Request (DAR), and the Data

Project Directive (DPD). The FD Is the first element In the specification

4..4hierarchy. It provides a detailed description (in the user's terminology) of

-the system requirements Identified In the DAR. The DAR is a oconceptual

-~ descrlptionm document to transmit the proposed software project to upper

management for approval. Finally, the DPD specifies management parameters

and requirements for the development such as estimated resource usages.
development guidelines and constraints, and project organization.

4The concept phase Is terminated by the functional baseline. The

.4 System Requirements Review (SRR) assesses the system requirements and

accepts the FD. The concept phase checklist Includes questions such as

"have sufficient trade-off analyses been conducted'% and 'are objectives and
performance envelopes defined'.

*Definition phase. Following the management decision to accept the

requirements Identified In the FD comes the definition process. This process

*will delineate the system to be developed. The technical requirements are

allocated to Individual computer program configuration Items (CPCIs). the

functional description Is updated, and the second level of the specification

hierarchy. the system/subsystem specification (SS) Is generated. The SS Is

a technical document which governs the development and testing of the

software system. It defines the subsystem decomposition, CPCIs within each ,?

subsystem, and the Interfaces among the various system parts. It also

specifies the performance required of each system part. The SS represents

the top level design of the required system and the customer Is closely

Involved in its creation.

The formal acceptance of the system/subsystem specification by the

System Design Review establishes the allocated baseline. The SDR will

determine if the allocated requirements in the CPCIs represent a complete

and optimal synthesis of system requirements, if the management concept

is properly tailored to the development program ahead, and if the test plan

is adequate to address the likely technical risks Involved In the design. The

SDR roughly correlates -to the Decomposition Review in our methodology.

Development phase. The development phase begins after management

ratification of the system specified In the allocated baseline. The goal of

this third phase is to design, generate. and qualify the program parts (CPCIs)

just defined. The development phase consists of four separate parts each

of which Is culminated by a review.

The first development phase part Is the preliminary design. Here

the Initial design of CPCIs is accomplished and a test plan for each is

generated. The Preliminary Design Review (PDR) brings the client and

developer together to confirm the Integrity of the Initial design effort for each

CPCI. The developer will present the results of any pilot efforts (prototypes)

to the client at this time. Our Abstract Design Review corresponds to the

PDR In that It seeks client approval of the Initial (abstract) design of the

.."* horizontally decomposed components.

" The second part of the development phase is the detailed design and

Includes the inital preparation of the program specification. The initial version

of the program specification (PS) defines the characteristics of a computer

program In sufficient detail to permit Implementation In a programming

language. An updated version of the PS will serve as the basic document

for maintenance of the system design. The Critical Design Review satisfies

the client and management that the detailed design meets Its requirements

and that the design Is sufficiently defined to begin implementation. (This

corresponds to our Detailed Design Review.)

The next portion of development phase Is the Implementation of the

CPCIs and the deveiopment testing to debug and partially valdate the CPCis.

The Product Verification Review marks the end of this development phase

part; it Insures that the Implementation Is ready for validation testing and

establishes the product baseline. The PS is frozen In this baseline.

The final portion of the development phase consists of the Integration

of CPCIs. the "formal" validation tests. final system documentation preparation,

and system acceptance by the user. During this life cycle segment are the

two required audits: the Functional Configuration Audit to verify that each CPCI

has achieved the performance specified for it, and the Physical Configuration

Audit to Insure the system as Implemented corresponds to Its technical

documention. The System Validation Review (SVR) completes the development

phase by reviewing the qualified CPCIs and their documentation prior to

transfer of system responsibility to the client and the establishment of the

operational baseline.

Our Software Verification Review compares closely to the PVR of the

USAF methodology. However, we have essentially combined the effects of

the two audits and the SVR Into our final System Review. We feel this is

reasonable because the effects of the formalism will be to decrease the

reliance on testing and also Increase the correctness (as far as actually

reflecting the system Implementation) of the system documentation.

Operation phase. In the final phase of the USAF methodology the

client operates the designed system based on the system documentation

delivered at the operational baseline and maintains the system by reference

to the program specifications There has been no attempt In this methodology

to design a family of systems or to structure design decisions so that

maintenance and redesign will be simplfled. Indeed, It is this very lack of

emphasis on the techniques and structure of the design process (we mean

design process in Its narrowest sense here) that bodes very badly for the

client's ability to make repairs in a cost effective manner and, even more

especially, to adapt the system to changing requirements.

Summary.

Since we have used a modified "waterfall" model In the creation of

our methodology, there are some similarities to the USAF methodology. Most

notable are the use of reviews to end the significant sections of the lifecycle

and the utilization of baselines and a configuration management system to

maintain control and visibility of the design products.

.. o

.

The most striking difference between the two methodologies Is

obviously that the USAF approach does not have many software engineering

features and no formal features built into It. It does not disallow the use

of these concepts but It does not advocate them either. In essence then,

the USAF system is just a management framework In which the business of

design can be accomplished In any manner the designer deems appropriate.

Our complaint with this approach Is two-fold. First, as we have seen,
not using the software engineering techniques Is quite likely to make the total

lifecycle costs of the product much higher, even though Initial production cost

may be less. Secondly. if software engineering techniques, especially formal

ones, are used to control the lifecycle costs, then they must be an inherent

part of the management philosophy in the development as well. That Is, it

*" must be an Integrated methodology not just coexistent management and formal

design frameworks.

In our methodology we have placed a much greater emphasis on client

Involvement and have portrayed the client as much less sure of his needs.

Part of this difference can be explained by the fact that the USAF methodology

can expect clients from a homogeneous background with a constant level

of understanding and expertise. This means that while our methodology could

be used In place of the USAF approach. the reverse would not be true in

many cases.

Finally, there are certainly some good lessons to be learned from

the USAF methodology with its vast usage in the management of large software

N developments. Primary among these lessons is the need to derive and apply

strict documentation conventions and review criteria (eg. checklists).

Unfortunately, It is only after experience with our own methodology that we

will have the necessary Insight to suggest more detailed documentation

conventions and management checklists.

, U-

'I il !

9

CHAPTER VII

Conclusions

it has been the goal of this thesis to define and partially analyze

by case study the rudiments of a practical methodology designed to reduce

the overall lifecycle costs for large application software developments. This

methodology has drawn from experience gained in the historical approaches

to software design and - has attempted to Improve on these approaches by

amalgamating selected management and software engineering techniques.

Our conclusions and generalizations about the proposed methodology were

presented in Section VI.1. Of course, this by no means represents the

completion of this research; it is only the first phase In the methodology

design.

The remainder of this chapter briefly outlines the contributions which

have resulted from the research to date, with an overview of the possible

future directions of related research.

VII.1 Contributions.

This study represents the first time that the set theoretical notation.

Z. has been used In the total desiln of a moderately sized system. It has

previously been used and proven as a tool for analysis of software system

architectures and as a means of documenting existing systems. ,n some

Instances we pushed the limits of this notation slightly to accommodate this

new role.
To aid In the demonstration and analysis of our software methodology.

we designed an Information sharing, windowing display and filing system.

The Initial very abstract definition of the system represents a useful aid In

the design and documentation of a large family of similar systems, including

those with graphical capabilities.

.=

S1 .

W7

Certainly the most significant contribution made by this research has

been to make a viable start toward defining a practical system for applying

simultaneously the necessary management and software engineering

techniques required to solve the software dilemma.

VII.2 Future Research.

The next phase of this continuing research must be to modify the

methodology based upon the conclusions drawn in Section VI.1. This fine

tuning will prepare the way for testing in a more realistic environment; that

Is, with a client. limited resources, multiple designers and Implementors, a

management interface, etc. Only with a case study of this Increased

magnitude will it be possible to assess the effects of the methodology on

the Ifecycle and development aspects which determine system cost (eg.

maintenance. reliability, productivity, user satisfaction, etc.)

Two other areas of related research are also relevant to the future

viability of this methodology. The first Is the creation of various automated

tools to support the design process. These tools might give the capability

to:

1. generate different versions of the specifications to meet the needs

of the different users (implementors. designers, clients. verifiers, maintainers,

etc.)

2. expand the state space definitions to explicitly show all hidden

predicates

3. combine theories according to theory combinators

4. 'create/retrace the Basis chain to determine definitions or trace

the effects of changes to the design

S. check the consistency of state predicates and types after

advancement, refinement, or recomposition

6. rapidly create prototypes from specifications.

• The other area of related research Is in the construction of a library

of high level abstractions to be used as component starting points In future

designs. Such a library could also eventually prescribe standards and

techniques for the combination of these components. This research would

relate very closely to mode of software development seen by some (eg.

(Wasserman.821) as the future of software engineering.

. ,*

ADDENDUM

Subsequent to the preparation of this thesis a very recent and

substantial study of software development methodologies has come to our

attention.[Wasserman.83a: Wasserman.83bJ That study was done "toh

consolidate [past software development] work and to estabiish a framework

-~ from which methodologies could be developed and enhanced* -- especially -

with regard to Ada software projects. The result of this study was a set

of general requirements for a software development methodology, a set of

criteria based upon these requirements for evaluation of methodologies, and

* an evaluation of 24 current software methodologies. . Although developed In

a different style and for a different ultimate purpose. that study validates In

- a very large measure the criteria and the methodology set forth In this thesis.

Especially Important to us Is the significant reinforcement that work gives to

our assertion that a viable methodology must be a coherent combination of

* technical and management techniques spanning the whole lifecycle.

It is also Interesting to note that, of the 24 current methodologies

surveyed In that report. only two appear to have a formal basis which allowed

some degree of formal verification. Of these two, both were still under

development and had not been tested In Industry. Neither addressed

management Issues in any detail. Obviously the need for a unified,

comprehensive methodology still exists.

Appendix A

Specification Ubrary

..

p..

5,..,

d's

.5'

'-S

5..,
S...

.~I

a,

1~~~~

Notation

- partial functionp

(f XxY I(Vy ran(f)) f(f-'(y)) -y)ii

total function

X -~Y -f X -. Y Idom(f) -X)

total injection
X- Y - f X -. Y If; f1 dorn (f) nl

(Va, b X -*Y; p P(X); q .P(Y); v SEQ~aJ;

C X ~-Y)

F restriction

a s a 0 I(X)

J corestriction

a d t I 1(Y) 0 a

* domain subtraction

a \p -a P (X -p)

/ range subtraction

a /q -a J (Y -q)

a functional overriding

a a b a dom (b) Ub

* closure

a* - I(X) U (a* o a) -U(a' Ii IV) -

-* function construction

Ex I--* y1 - ((x,y))

. .t . .- . .

loop looping

loop (a) - 1(X) I (loop(a) oa) -a* /dom(a)

update functional updating

update(v) -v(l) S v(2) S ... S v(length(v))

-uncurry G e (X-. (Y-.Z))

uncurry(G) e (X,Y) -eZ

* 0 D image

COPD [Y Y I (3x p)(xcy))

x Lambda abstraction

()x X) (term) - f(x,term) Ix :X)

r arbitrary element selection

element creation

Schema Combinators

A schema has the form:

NME

Signature

* - Predicates

Schema output component designator

0 Schema composition

F;G a GOP

A Schema conjunction

Merges components in the signature; conjoins

predicates.

1D-Ai32 569 FORMAL TECHNIQUES IN THE MANAGEMENT OF SOFTWARE DESIGN 4/4
(U) AIR FORCE INST OF TECH WRIGHT-PATTERSON AFD OH
WI E RICHARDSON 17 JUN 81AFIT'CI/HR-83-28D

UNCLASSIFIED FG92 N

mmhhhmhhiEN

4,

-.

W 1225

W -2

16

11-25 UL- 1I.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.......

9,~

v Schema disjunction

Merges components in the signature; disjoins

predicates.

%I.

p4Schema component replacement

Textual substitution of schema within schema

signature.

For example, given:

A, AA, and B represent schemata. P and Q are predicates.

B

P(A,B)

then:

XIaX (Ap4AA) where AA-AIQ(A)

or expanding Xl we get

AAA

B B

P(A,B) P(A,B)

Q(A)

X I Q(A)

4~1

LOOP Schema looping

Multiple functional applications of a

potentially non-homogeneous schema. In the

following, F represents a schema with

homogeneous (ie. both dashed and undashed)

component z, non-homogeneous component a

(input), and non-homogeneous component b'

-o (output). Underlined components are

sequences of the named component of F.

F

z .z

z ':SEQO 1[Z]

a . SEQ[A]

b' SEQ[B]

z'(o) - z

(Vn : JV In z' - 1)

(F[z/z'(n-l), z'/z'(n), a/a(n), b'jb'(n)])

LOOP

2' :Z

' Z~' " tz '"" '+

Schema promotion
A is defined in the vertical level named

MODULE or, if not defined there, is promoted

to that level from the most recent previous

explicit definition.

A[n/mj Schema component substitution

Textual replacement of term n by term m within

the schema.

0 Don't care value of schema component

e Schema component names as an ordered tuple

A Delta schema

Schema with a dashed and undashed version of

the named schema.

* Null schema

The homogeneous components of the schema is

not changed by this operation. (Used in

observations.)

Abstractions

1. LINE

LINE Z

SEQ [Z

2. ARRAY

ARRAY z

a : SEQ C : LINE]

(3m : JV)

(Vn : dom (a))

S(length (a (n)) -m)

The array is a sequence of lines which have a

constant length.

3. FUNCTION

FUNCTION

ARRAY

length (a) -2

(Vn,m :dom (a ()

(a (1) (n) -a ()(in) ~n m)

The function is an array with two lines, one for the

domain and one for the range. The positional index within

the line relates the two values. To be a function, each

domain

value must be unique.

* 4. FILER

(See Chapter III.)

5. EDITOR

(See the following.)

EDITOR

oasis.

Forward: EOOOCi
p

;" Comments:

This Is an extract from the display editor specification developed in -
[Sufrin.81 b].

".,.

-- 4.

.9%'

I.

4..4

4. l i l I i i l

EDOOCII

Comments.

This component of the editor defines the document to be edited and

the current position within that document. Several useful operations on the

document are also defined.-

* Auxiliary Definitions:

* a. speck+ is ABSTRACT

We will not define at this point what types of characters are In the

document.

b. el e speck+i

However. we do wish to Insure that an end of line marker does exist

In the character set.

State Component Definition:

EDDOCI

1 .SEQ (speck+ I
r .SEQ (speck+ I

Operations:

DELETR

6EDDOCl

r

r, tail (r)

This operation deletes the next character after the current position.

b.

TRAVERSE

*EDDOCi

r 0

i1 - 1 (first (r))

r- tail (r)

* TRAVERSE moves the current position one character down the

document.

C.

INSERt

*EDDOCi

c speck+

(c)

This operation will allow the addition of a character prior to the

current position.

d.

ALTER

*EDDOC 1

c speck+

K 0

r- tail (r)

This will replace the next character and move the current position

by one place.

EDITOR

Stale De~nIUon

EDITOR

new EDDOCI

prior EDDOCI

This will allow Incorrect operations on the document to be reversed.

Operaions:

*EDITOR

new -pr ior

pr ior' new

With this operation. changes to the document can be reversed at

any time prior to the next change request. Of course. the document changing

operations must be appropriately promoted to the EDITOR state.

EDOOCIA

Basis:

Prior: EDDOCI

Comnts:

This refinement changes the representation of the editor document
*1

to the more familiar array form.

Awdflary Definitions:

a. speck a speck+ -(ell

The character set required by this representation Is still abstract but

it no longer Includes the end of line character.

b. sp a speck

The space must be a legal character In this character set.

C.

endline I V, x ARRAY [speck] -* V1

endline a ()k1,doc I a dom (doc))

min (b : 1.dom(doc(l))+1 (Vxx dom(doc(1)))

(xx ;0 b A doc (1) (xx) - sp))

The end of any line In the document Is defined by the first position

In the line where It and all succeeding characters are blanks.

Stae Component. Definition:

EDDOC' A

EDDOCI

doe ARRAY [speck]
position PAIR [VJ

REFERENCES

tAbriaI.80a1 J.-R. Abrial
Lecture Notes on Propositional Calculus
M.Sc. In Computation
Oxford University. Michaelmas Term 1980.

[Abril.80b1 J.-R. Abrial
The Specification Language Z: Basic Library
Specification Group Working Paper
Programming Research Group
Oxford University. April 1980.

[Abriai.80c1 J.-R. Abrial. A.A. Shuman, B. Meyer
*Specification Languageo
In On the Construction of Programs
R.M. McKeag. A.M. Macnaghten (eds)
Cambridge University Press
New York. 1980.

tAbriai.821 J.-R. Abrial
A Theoretical Foundation to Formal Programming
unpublished
May 1982.

(Baker.721 F.T. Baker
aChief Programmer Team Management of Production Programmingo
IBM Systems Journal
Vol 11. Number 1
1972.

1BergJ H.K. Berg
OTowards a Uniform Design Methodology for

Software. Firmware. and Hardwareo
In LBerg.S0I.

[Berg.801 H.K. Berg. W.K. 01101 (eIs.)
The Use of Formal Specd, -^'on Software
iFS-38
Springer-Veriag
Berlin, 1980.

[Berg.82) H.K. Berg. W.E Boebert. W.R. Franta. T.G. Moher
Formal Met hods at Program Verification and Spec ification
Prentice-Hall. Inc.
Engeiwood Cliffs. N.J., 1973.

[Bergland.813 G.D. Bergland. R.D. Gordon (eds.)
Software Design Strategies
IEEE Computer Society Press
New York. 1982.

[Bjorner.801 D. Bjorner
Formal Description of Programming Concepts -

a Software Engineering Viewpoint*
in Proceedings of Mathematical Foundations

of Computer Science
Lecture Notes In Computer Science. No. 88

* Springer-Verlag
Berlin. 1980.

4 (Blorner.80al D. Bjorner
Abstract Software Specifications
Lecture Note In Computer Science. No. 86
Springer-Verlag
Berlin.) 980.

(Blorner.821 D. Bjorner
Formal Specification and Software Development
Prentice-Hail International
London. 1982.

[Boebofl.791 W.E. Boebert
Managing Software Projects
Seminar Notes. 1979.

[Boehm.761 B.W. Boehm
*Software Engineeringe
In [Borgiand.81).

* (Boehm.813 B.W. Boehm
Software Engineering Economics
Prentice-Hall. Inc.
Englewood Cliffs. N.J.. 1981.

[Boyd~A D.L. Boyd. A. Pizzarello. W.T. Wood
8An Overview of ROM: Rational Design Methodologyo
In [Berg.801.

(Boyd~b] D.L. Boyd. A. PIzzareiio, W.T. Wood
Abtstraction and Refinement In RDO
In LBerg.801.

(Branstad.811 M.A. Branstad. W.K. Adrian (ode)
%NBS Workshop Report on Programming EnvironmentsO
Software Engineering Notes (ACM-SIGSOFT)
Voi6. Number 4
August 1981.

[Brooks.751 F. P. Brooks
The Mythical Man-Month: Essays on Software Engineering
Addison-Wesley
New York. 1975.

(Buckle.??) J. Buckle
Managing Software Projects
American Elsevier
New York. 1977.

(Burstall.801 R.M. Burstail. J.A. Goguen
'Semantics of CLEAR. a Specification Language*
In [B3Jorner,80a)

(Burstall.811 R.M. Burstall. J.A. Goguen
'An Informal Introduction to Specifications Using CLEAR*
In The Correctness Problem In Computer Science
Boyer. Moore (ods.)
Academic Press
New York. 1981.

(Carlson.82J E. D. Carlson. J. R. Rhyne. D. L. Weller
OA Design for a Family of Display Management Systems'
IBM Research Report RJ3372(40408)
IBM Research Laboratory
San Jose. California. January 18.1982.

ECave.781 W.C. Cave. A.B. Salisbury
'Controlling the Software Life Cycle -- the Project Management Task'
In [Bergiand.811.

LDahl.721 O.-J. Dahl, E.W. Dilketra. C.A.R. Hoare
Structured Programming
Academic Press
London, 1972.

[Danlels,711 A. Daniels. D. Yeates
Systems Analysis
Science Research Associates, Inc.
California. 1971.

(Dewar.821 R.B.K. Dewar. M, Sharir. E. Weixelbaum
'TransformatIonal Derivation of a Garbage Collection Algorithm'
Transactions on Programming Languages and Systems (ACMTOPLAS)
Vol 4. Number 4
October 1982.

EDijkstra.681 E.W. DIjkstra
00o To Statement Considered Harmful'
Communications of the ACM
Vol 11. Number 4
March 1968.

[Dilkstra.781 E.W. Dijkstra
A Discipline of Programming

9! Prentice-Hall, Inc.
UEnglewood Cliffs. N.J., 1976.

[Distaso.80) J.R. Distaso
OSoftware Management -- A Survey of the Practice In 1 9800
In [Bergland.811.

[Domolki.801 B. Domolki
*An Example of Hierarchical Program SpecIficationa
In [Biorner.80a1

[Donaidson,781 H. Donaldson
*A Guide to the Successful Management of Computer Projects

John Wiley & Sons
New York. 1978.

[Erdle.821 T.J. Erdie
PER QFILE: A Case Study In Formal Specification
Dissertation, M.Sc In Computation
Oxford University. September 1982.

(Freeman.78a1 P. Freeman
*Software Design Representation: A Case Studye
Software--Practice and Experience
Vol 8
1978.

[Freeman.78b1 P. Freeman
fSoftware Design Representation: Analysis and Improvements*
Software--Practice and Experience
Vol a
1978.

LGans.791 C. Gane. T. Sar'.on
Structured Systemis Anaiysis: Tools and Techniques
Prentice-Hail. Inc.
Englewood Cliffs. N.J., 1979.

(Goguen.801 J. Goguen
aThoughts on Specification. Design and Verification*
Software Engineering Notes (ACM-SiGSOFT)
Vol S. Number3
July 1960.

. uU ~ s y. ~ . ~7.i

(Gries.783 D. Onies (editor)
Programming Methodology
Springer-Verlag
New York. 1978.

[Grles.811 D. Grnes
The Science of Programming
Springer-Verlag -

New York. 1981.

(Grifflths.781 S. N. Griffiths
aDesign Methodologies In a Comparlsone
In [Bergiand.811

[Gutag.821 J. Outtag. J. Horning. J. Wing
Some Remarks on Putting Formal Specifications to

Productive Use (draft)
Xerox PARC
Palo Alto. California. February 1982.

4 IHoare.691 C.A.R. Hoare
mAn Axiomatic Basis for Computer Programminge
Communications of the ACM
Vol 12. Number 10
October 1969.

[Hoare.721 C.A.R. Hoare

* Proof of Correctness of Data Representatlonso
Act& lnformatica
Vol 1. Number 4
1972.

[Hoare.801 C.A.R. Hoare
Lecture Notes on Program Correctness and Validation
M.Sc. In Computation
Oxford University. Michaeimas Term 1980.

[Hoare.811 C.A.R. Hoare
Draft Notes entitled Screen Oriented Filing System
Programming Research Group
Oxford University. February 1981.

(Hoare.821 C.A.R. Hoare
Programming Is an Engineering Profession
Technical Monograph PRG-27
Programming Research Group
Oxford University. May 1982.

(Horning.791 J. Horning. J. Guttag
Axioms for a Display Interface, Revised (draft)
Xerox PARC
Palo Ali*-, Californi. June 1979.

. ~~~~7 W .. a -- ..

[Hornlng.801 J. Horning. J. Guttag
Formal Specification as a Design Tool
Xerox PARC
Palo Alto. California, January 1980.

(Horning.811 J. Horning
Letter to the Wa 2.3 Participants
Xerox PARC
Paio Aito. California. July 24. 1981.

(Ingrassia.781 F.S. ingrassia
aCombating the 90% Complete Syndromeo
Datamatlon
January 1978.

[Jackson.751 M.A. Jackson
Principles of Program Design
Academic Press
London. 1975.

[Jensen. K.791 K. Jensen. N. Wirth
PASCAL User Manual and Report
Lecture Notes In Computer Science. No. 18
Springer-Verlag
New Yoric. 1979.

[Jensen.791 R.W. Jensen. C.C. Tonles
Software Engineering
Prentice-Hail., Inc.
Englewood Cliffs, N.J., 1979.

*1 [Jones.803 C.B. Jones
Software Development:, a Rigorous Approach
Prentice-Hall International
London. 1980.

[Jones.811 C.B. Jones
Development Methods for Computer Programs

Including a Notion of Interference
Technical Monograph PRG-25
Programming Research Group
Oxford University. June 1981.

tKeeton.801 J. Keeton-Williams
*Nseded-Verlfiable Guidelines on How to Design a Methodologym

Software Engineering Notes (ACM-SIGSOFT)
Vol 5. Number 3
July 1980. .

(Levitt] KIN. Levitt. L. Robinson. S.A. Silverberg
*Writing Simulatable Specifications in SPECIAL'
in (Berg.SOI.

(Manna.801 Z. Manna. R. WaidInger
*A Deductive Approach to Program Synthesise
Transactions on Programming Languages and Systems (ACMTOPLAS)
Vol 2. Number 1
January 1980.

(Meyer.821 B. Meyer
"Principles of Package Designa
Communications of the ACM

- Vol 25. Number 7
July 1982.

(Meyrowltz,81) N. Meyrowitz. M. Moser
"BRUWIN: An Adaptable Design Strategy for Window

Manager/Virtual Terminal Systems"
Proceedings of the Eighth Symposium on

Operating System Principles (ACM-SIGOPS)
Vol 15. Number 5

December 1981.

(Mallgren.821 W.R. Mailgren
"Formal Specification of Graphic Data Types'
Transactions on Programming Languages and Systems (ACMTOPLAS)
Vol 4. Number 4
October 1982.

(Morgan.82a] C. Morgan
"Specification of a Communication System'
Proceedings of an International Seminar on Synchronisation,

Control and Communication in Distributed Computing Systems
Academic Press
London. 1982.

(Morgan.82b] C. Morgan
'Specification of the Cambridge Model

Distributed System Nameservice"

" Distributed Computed Project Working Paper
Programming Research Group
Oxford University. May 1982.

[Parker.781 J. Parker
*A Comparison of Design Methodologies" r
Software Engineering Notes (ACM-SiSOFT)
Vol 3. Number 4
October 1978.

(Parnas.721 D.L. Parnas
2On the Criteria to be Used In Decomposing Systems Into Modules'
Communication of the ACM
Vol 15. Number 12
December 1972.

(Parnas.751 DL Parnas
00n the Design and Development of Program Familleso
T. H. Darmstadt
July 2. 1975.

[Peters.??) L J. Peters. L. L. Tripp
oComparlng Software Design Methodologies*
In (Bergland.811

[Peters 781 L. Peters
ORelating Software Requirments and Design"

Software Engineering Notes (ACM-SIGSOFT)
Vol 3. Number 5
November 1978.

IPressman.82) R. S. Pressman

Software Engineering: a Practitioner's Approach
McGraw-Hill Book Co.
New York, 1982.

(Pyle.811 I.C. Pyle
Towards Specifying an Informnation System
Universit of York-Department of Computer Science
Heslington. June 1981.

(Richardson.811 W.E. Richardson
Visible Filing System--A Case Study In Software Engineering
Dissertation. MSc In Computation

* Oxford University. September 1981.

(Richardson.821 W. E. Richardson
aProject Simple. a Methodology Triaro
Unpublished working paper
Oxford University. November 1982.

[Riddle.78) W.E. Riddle. J.C. Wileden
oLanguages for Representing Software Specifications and Designs"
Software Engineering Notes (ACM-SIGSOFT)
Vol 3. Number 4
October 1978.

(Rittei.73J H.W.J. Rittel. M.M. Webber
Dile9mmas In a General Theory of Planning'

Policy Sciences
Number 4
April 1973.

(Robinson.781 L. Robinson
HDM - Command and Staff Overview
SRI International
Menlo Park. California. February 1978.

IRobinson.791 L. Robinson. K.N. Levitt. B.A. Silverberg
The HDM Handbook, Vol. I, 1i, 111)
SRI International
Menlo Park. California. June 1979.

[Ruiio.801 T.A. Ruilo (editor)
* Advances In Computer Programming Management (Vol 1)

Heyden & Son. Inc.
Philadelphia. 1980.

.4

[Scheld.801 J. Scheid
OINA JO: SDCs Formai Development Method'

Software Engineering Notes (ACM-SIGSOFT)
Vol S. Number 3
July 1980.

(Semprevivo.781 P.C. Semprevivo
Systems Analysis: Definition, Process, and Design
Science Research Associates. Inc.
California. 1976.

(Shnoiderman.801 B. Shneiderman
Software Psychology 7
Winthrop Publishers. Inc.
Cambridge, Mass.. 1980.

(Silverberg) B.A. Silverberg
An Overview of the SRI Hierarchical Development Method
SRI International
Menlo Park, California. undated.

24 (Sorensen) lb Holm Sorensen
A Design of a Display Interface
Programming Research Group
Oxford University. undated.

[Sufrin.81a1 B. Sufrin
Lecture Notes on Case Studies and Class Theory
M.Sc. In Computation
Oxford University. Hilary Term 1981.

k 41 (Sufrin.81b1 B. Sufrin
Formal Specification of a Display Editor
Technical Monograph PRO-21
Programming Research Group
Oxford University, June 1981.

(Sufrln,81c3 B. Sufrin
Correctness of a Display Editor Implementation
Specification Group Working Paper
Programming Research Group
Oxford University. 1981.

ISufrin.821 B. Sufrin
* 'Formal System Specification Notations and Examples*

in Tools and Notions for Program Construction
D. Neel (ed.)
Cambridge University Press
Cambridge. 1982.

(Swartout.82) W. Swartout. R. Balzer

%On the Inevitable Intertwining of Specification and Implementation'
Communications of the ACM
Vol 25. Number 7
July 1982.

(Tate.81) A. Tate
*High Performance Personal Computers-Circa 1980
IVCC Bulletin
Vol 3. No. 1. pg 6-10
Spring 1981.

(UCSD.791 UCSD (Mini-Micro Computer) Pascal Version 11.0
Institute for Information Systems
La Jolla. California. March iVQ. K

(USAF) US Air Force Regulation 300-15
"Automated Data System Project Management"

January 1978.

[USAFa] US Air Force Regulation 300-12. Vol 1
"Procedures for Managing Automated Data Processing Systems"

December 1982.

(Wasserman.821 A.I. Wasserman. S. Gutz
'The Future of Programming"

Communications of the ACM
Vol. 25. Number 3
March 1982.

(Wassorman,83a1 A.I. Wasserman. P. Freeman
'Ada Methodologies: Concepts and Requirements*
Software Engineering Notes (ACM-SIGSOFT)
Vol 8. Number 1
January 1983.

[Wassermano83b] A.I. Wasserman. P. Freeman. M. Porcella
'Ada Methodology Questionaire Summary"

Software Engineering Notes (ACM-SIGSOFT)
Vol 8. Number 1
January 1983.

-.-.

1Wegner79) P. Wegner (editor)
Research Directions In Software Technology
MIT Press
Cambridge, Massachusetts. 1979.

[Weinberg.69) G.M. Weinberg
The Psychology of Computer Programming
Van Nostrand Reinhold Co.
New York. 1989.

.Wlrth.711 N. Wirlh
"Program Development By Stepwise Refinement"

p., Communications of the ACM
Vol 14. Number 4

April 1971.

1WIrnh.73 N. Wirlh
Systematic Programming: An Introduction
Prentice-Hall. Inc.
Englewood Cliffs. N.J., 1973

[Wirth.761 N. Wlrth
Algorithms + Data Structures = Programs
Prentice-Hall. Inc.
Englewood Cliffs. N.J.. 1976.

[Yourdon.781 E. Yourdon
Structured Walk-Through&
Yourdon. Inc.

New York. 1978.

lYourdon.791 E. Yourdon, LL Constantine
Structured Design
Prentice-Hall. Inc.

Englewood Cliffs, N.J., 1979.

.Zelkowltz, 791 M. Zelkowltz, A.C. Shaw. J.D. Gannon
Principles of Software Engineering and Design
Prentice-Hall. Inc.

Englewood Cliffs, N.J., 1979.

REF-II

I;, C

FILMED

4 4p

I S,

fl, W_

!7 1$ S T

